(2013•朝陽區(qū)一模)以雙曲線
x23
-y2=1
的右焦點為焦點,頂點在原點的拋物線的標(biāo)準方程是
y2=8x
y2=8x
分析:根據(jù)雙曲線方程,算出它的右焦點為F(2,0),也是拋物線的焦點.由此設(shè)出拋物線方程為y2=2px,(p>0),結(jié)合拋物線焦點坐標(biāo)的公式,可得p=4,從而得出該拋物線的標(biāo)準方程.
解答:解:∵雙曲線的方程為
x2
3
-y2=1
,
∴a2=3,b2=1,得c=2,
∴雙曲線的右焦點為F(2,0),也是拋物線的焦點
設(shè)拋物線方程為y2=2px,(p>0),則
p
2
=2,得2p=8
∴拋物線方程是y2=8x.
故答案為:y2=8x.
點評:本題給出拋物線焦點與已知雙曲線的右焦點重合,求拋物線的標(biāo)準方程,著重考查了雙曲線、拋物線的標(biāo)準方程與簡單幾何性質(zhì)等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•朝陽區(qū)一模)已知函數(shù)f(x)=
3
2
sinωx-sin2
ωx
2
+
1
2
(ω>0)的最小正周期為π.
(Ⅰ)求ω的值及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈[0,
π
2
]
時,求函數(shù)f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•朝陽區(qū)一模)若直線y=x+m與圓x2+y2+4x+2=0有兩個不同的公共點,則實數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•朝陽區(qū)一模)盒子中裝有四張大小形狀均相同的卡片,卡片上分別標(biāo)有數(shù)字-1,0,1,2.稱“從盒中隨機抽取一張,記下卡片上的數(shù)字后并放回”為一次試驗(設(shè)每次試驗的結(jié)果互不影響).
(Ⅰ)在一次試驗中,求卡片上的數(shù)字為正數(shù)的概率;
(Ⅱ)在四次試驗中,求至少有兩次卡片上的數(shù)字都為正數(shù)的概率;
(Ⅲ)在兩次試驗中,記卡片上的數(shù)字分別為ξ,η,試求隨機變量X=ξ•η的分布列與數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•朝陽區(qū)一模)已知函數(shù)f(x)=x2-(a+2)x+alnx+2a+2,其中a≤2.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在(0,2]上有且只有一個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•朝陽區(qū)一模)設(shè)τ=(x1,x2,…,x10)是數(shù)1,2,3,4,5,6,7,8,9,10的任意一個全排列,定義S(τ)=
10k=1
|2xk-3xk+1|
,其中x11=x1
(Ⅰ)若τ=(10,9,8,7,6,5,4,3,2,1),求S(τ)的值;
(Ⅱ)求S(τ)的最大值;
(Ⅲ)求使S(τ)達到最大值的所有排列τ的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案