【題目】已知函數(shù)f(x)=x(lnx﹣2ax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞, )
B.(0, )
C.(0, )
D.( ,+∞)
【答案】C
【解析】解:f(x)=xlnx﹣2ax2(x>0),f′(x)=lnx+1﹣4ax. 令g(x)=lnx+1﹣4ax,
∵函數(shù)f(x)=x(lnx﹣ax)有兩個(gè)極值點(diǎn),
則g(x)=0在區(qū)間(0,+∞)上有兩個(gè)實(shí)數(shù)根.
g′(x)= ﹣4a= ,
當(dāng)a≤0時(shí),g′(x)>0,則函數(shù)g(x)在區(qū)間(0,+∞)單調(diào)遞增,
因此g(x)=0在區(qū)間(0,+∞)上不可能有兩個(gè)實(shí)數(shù)根,應(yīng)舍去.
當(dāng)a>0時(shí),令g′(x)=0,解得x= .
令g′(x)>0,解得0<x< ,此時(shí)函數(shù)g(x)單調(diào)遞增;
令g′(x)<0,解得x> ,此時(shí)函數(shù)g(x)單調(diào)遞減.
∴當(dāng)x= 時(shí),函數(shù)g(x)取得極大值.
當(dāng)x趨近于0與x趨近于+∞時(shí),g(x)→﹣∞,
要使g(x)=0在區(qū)間(0,+∞)上有兩個(gè)實(shí)數(shù)根,
只需g( )=ln >0,解得0<a< .
∴實(shí)數(shù)a的取值范圍是(0, ).
故選:C.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的極值與導(dǎo)數(shù),需要了解求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=sin(ωx+ )向右平移 個(gè)單位后,所得的圖象與原函數(shù)圖象關(guān)于x軸對(duì)稱,則ω的最小正值為( )
A.1
B.2
C.
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《城市規(guī)劃管理意見》里面提出“新建住宅要推廣街區(qū)制,原則上不再建設(shè)封閉住宅小區(qū),已建成的封閉小區(qū)和單位大院要逐步打開”,這個(gè)消息在網(wǎng)上一石激起千層浪,各種說(shuō)法不一而足.某網(wǎng)站為了解居民對(duì)“開放小區(qū)”認(rèn)同與否,從歲的人群中隨機(jī)抽取了人進(jìn)行問卷調(diào)查,并且做出了各個(gè)年齡段的頻率分布直方圖(部分)如圖所示,同時(shí)對(duì)人對(duì)這“開放小區(qū)”認(rèn)同情況進(jìn)行統(tǒng)計(jì)得到下表:
(Ⅰ)完成所給的頻率分布直方圖,并求的值;
(Ⅱ)如果從兩個(gè)年齡段中的“認(rèn)同”人群中,按分層抽樣的方法抽取6人參與座談會(huì),然后從這6人中隨機(jī)抽取2人作進(jìn)一步調(diào)查,求這2人的年齡都在內(nèi)的概率 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的左右焦點(diǎn)分別為, ,左頂點(diǎn)為,上頂點(diǎn)為, 的面積為.
(1)求橢圓的方程;
(2)設(shè)直線: 與橢圓相交于不同的兩點(diǎn), , 是線段的中點(diǎn).若經(jīng)過(guò)點(diǎn)的直線與直線垂直于點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C1: 的離心率為 ,拋物線C2:x2=4y的焦點(diǎn)F是C1的一個(gè)頂點(diǎn).
(I)求橢圓C1的方程;
(II)過(guò)點(diǎn)F且斜率為k的直線l交橢圓C1于另一點(diǎn)D,交拋物線C2于A,B兩點(diǎn),線段DF的中點(diǎn)為M,直線OM交橢圓C1于P,Q兩點(diǎn),記直線OM的斜率為k'.
(i)求證:kk'=﹣ ;
(ii)△PDF的面積為S1 , △QAB的面積為是S2 , 若S1S2=λk2 , 求實(shí)數(shù)λ的最大值及取得最大值時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=sinxcosx﹣cos2(x+ ). (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f( )=0,a=1,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足 , .
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)的單調(diào)區(qū)間;
(3)如果s、t、r滿足|s﹣r|≤|t﹣r|,那么稱s比t更靠近r.當(dāng)a≥2且x≥1時(shí),試比較 和ex﹣1+a哪個(gè)更靠近lnx,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下表為“五點(diǎn)法”繪制函數(shù)圖象時(shí)的五個(gè)關(guān)鍵點(diǎn)的坐標(biāo)(其中).
0 | 2 | 0 | 0 |
(Ⅰ) 請(qǐng)寫出函數(shù)的最小正周期和解析式;
(Ⅱ) 求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅲ) 求函數(shù)在區(qū)間上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是的⊙O直徑,CB與⊙O相切于B,E為線段CB上一點(diǎn),連接AC、AE分別交⊙O于D、G兩點(diǎn),連接DG交CB于點(diǎn)F. (Ⅰ)求證:C、D、G、E四點(diǎn)共圓.
(Ⅱ)若F為EB的三等分點(diǎn)且靠近E,EG=1,GA=3,求線段CE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com