設(shè)A={-5,-4,-3,-2,-1,0,1,2,3,4,5},B={1,2,3},C={3,4,5},求:
(Ⅰ)B∪C,∁A(B∪C); 
(Ⅱ)A∩CA(B∪C).
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:(Ⅰ)由B與C求出B與C的并集,根據(jù)全集A,求出B與C并集的補(bǔ)集即可;
(Ⅱ)根據(jù)第一問(wèn)確定出B與C并集的補(bǔ)集,求出與A的交集即可.
解答: 解:(Ⅰ)∵A={-5,-4,-3,-2,-1,0,1,2,3,4,5},B={1,2,3},C={3,4,5},
∴B∪C={1,2,3,4,5},∁A(B∪C)={-5,-4,-3,-2,-1,0};
(Ⅱ)由(Ⅰ)得:∁A(B∪C)={-5,-4,-3,-2,-1,0},
∴A∩∁A(B∪C)={-5,-4,-3,-2,-1,0}.
點(diǎn)評(píng):此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是一次函數(shù),且滿足3f(x+1)-f(x)=2x+9,則函數(shù)f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且a+c=6,b=2,cosB=
7
9
,
(1)求a,c的值;
(2)求sin(A+B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-6x-7<0},B={x|x2+2x-8≥0},則A∪∁RB=( 。
A、{x|-1<x<7}
B、{x|x>2或x<-4
C、{x|-1<x<2}
D、{x|-4<x<7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

確定函數(shù)y=x-
1
x
在區(qū)間(-∞,0)上的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(sinωx,cosωx),
n
=(cosωx,cosωx),其中ω>0,函數(shù)f(x)=2
m
n
-1的最小正周期為π.
(Ⅰ) 求ω的值;
(Ⅱ) 求函數(shù)f(x)在[
π
6
π
4
]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x+2
+
1
|x|-3

①求函數(shù)的定義域;       
②求f(-1),f(
2
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用五點(diǎn)法作出函數(shù)y=2sin(2x-
π
3
)的圖象(在答題卡上所畫坐標(biāo)系中),并敘述該函數(shù)是由y=sinx的圖象如何變化而當(dāng)?shù)玫剑?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|x≤1},P={x|x>t},若M∩P≠∅,則實(shí)數(shù)t應(yīng)該滿足的條件是(  )
A、t>1B、t≥1
C、t<1D、t≤1

查看答案和解析>>

同步練習(xí)冊(cè)答案