已知△ABC中,若sinA(cosB+cosC)=sinB+sinC,則△ABC是( 。
分析:利用內(nèi)角和定理及誘導公式得到sinA=sin(B+C),代入已知等式,利用兩角和與差的正弦函數(shù)公式化簡,再利用多項式乘以多項式法則計算,整理后利用同角三角函數(shù)間的基本關系變形,再利用兩角和與差的余弦函數(shù)公式化簡后,得到B+C=90°,即可確定出三角形的形狀.
解答:解:sinA(cosB+cosC)=sinB+sinC,
變形得:sin(B+C)(cosB+cosC)=sinB+sinC,
即(sinBcosC+cosBsinC)(cosB+cosC)=sinB+sinC,
展開得:sinBcosBcosC+sinCcos2B+sinBcos2C+sinCcosCcosB=sinB+sinC,
sinBcosBcosC+sinCcosCcosB=sinB(1-cos2C)+sinC(1-cos2B),
cosBcosC(sinB+sinC)=sinBsin2C+sinCsin2B,即cosBcosC(sinB+sinC)=sinBsinC(sinB+sinC),
∵sinB+sinC≠0,
∴cosBcosC=sinBsinC,
整理得:cosBcosC-sinBsinC=0,即cos(B+C)=0,
∴B+C=90°,
則△ABC為直角三角形.
故選A
點評:此題考查了兩角和與差的正弦、余弦函數(shù)公式,以及同角三角函數(shù)間的基本關系,熟練掌握公式及基本關系是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知△ABC中,角A、B、C所對的邊分別為a、b、c.若a=1,∠B=45°,△ABC的面積S=2,那么△ABC的外接圓的直徑等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,a、b、c分別是三個內(nèi)角A、B、C的對邊,關于x的不等式x2cosC+4xsinC+6<0的解集是空集
(Ⅰ)求角C的最大值;
(Ⅱ)若c=
7
2
,△ABC的面積S=
3
2
3
,求當角C取最大值時a+b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,角A,B,C所對的邊分別是a,b,c,若△ABC的面積為S=
14
(a2+b2-c2)
,則∠C的度數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)已知△ABC中,a、b、c分別為角A、B、C的對邊長,S表示該三角形的面積,且2cos2B=cos2B+2cosB.
(1)求角B的大小;
(2)若a=2,S=2
3
,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中,錯誤命題的序號是
(1)(2)(4)
(1)(2)(4)

(1)已知△ABC中,a>b?A>B?sinA>sinB.
(2)已知△ABC中,a=3,b=5,c=7,S△ABC=
15
3
4

(3)已知數(shù)列{an}中,a1=1,an+1=2an+1,則其前5項的和為31.
(4)若數(shù)列{an}的前n項和為Sn=2an-1,則an=2n,n∈N*

查看答案和解析>>

同步練習冊答案