已知向量
a
=(x2,x+1),
b
=(1-x,t),若函數(shù)f(x)=
a
b
在區(qū)間(-1,1)上是增函數(shù),則實(shí)數(shù)t的取值范圍是( 。
A.[5,+∞)B.(5,+∞)C.(-∞,5]D.(-∞,5)
依定義f(x)=x2(1-x)+t(x+1)=-x3+x2+tx+t,
則f′(x)=-3x2+2x+t.
若f(x)在(-1,1)上是增函數(shù),
則在(-1,1)上f'(x)≥0恒成立.
∴f′(x)≥0?t≥3x2-2x,
在區(qū)間(-1,1)上恒成立,
考慮函數(shù)g(x)=3x2-2x,
由于g(x)的圖象是對稱軸為x=
1
3
,開口向上的拋物線,
故要使t≥3x2-2x在區(qū)間(-1,1)上恒成立?t≥g(-1),
即t≥5.
而當(dāng)t≥5時(shí),f′(x)在(-1,1)上滿足f′(x)>0,
即f(x)在(-1,1)上是增函數(shù);
故t的取值范圍是t≥5.
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(x2,x+1),
b
=(1-x,t),若函數(shù)f(x)=
a
b
在區(qū)間(-1,1)上是增函數(shù),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(ex+
x
2
,-x)
,
b
=(1,t)
,若函數(shù)f(x)=
a
b
在區(qū)間(-1,1)上存在單調(diào)遞增區(qū)間,則t的取值范圍是
(-∞,e+
1
2
(-∞,e+
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(x2-1,-1),
b
=(x,y),當(dāng)|x|<
2
時(shí),有
a
b
;當(dāng)|x|≥
2
時(shí),
a
b

(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)遞減區(qū)間;
(3)若對|x|≥
2
,都有f(x)≤m,求實(shí)數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sin(
x
2
+
π
12
),  cos
x
2
)
,
b
=(cos(
x
2
+
π
12
),  -cos
x
2
)
,x∈[
π
2
,  π]
,函數(shù)f(x)=
a
b

(1)若cosx=-
3
5
,求函數(shù)f(x)的值;
(2)若函數(shù)f(x)的圖象關(guān)于直線x=x0對稱,且x0∈(-2,-1),求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•東城區(qū)模擬)已知向量
a
=(x2,x+1),
b
=(1-x,t),若函數(shù)f(x)=
a
b
在區(qū)間(-1,1)上是增函數(shù),則實(shí)數(shù)t的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊答案