13.函數(shù)$y=\sqrt{{{log}_{\frac{1}{3}}}(3x-4)}$的定義域為($\frac{4}{3}$,$\frac{5}{3}$].

分析 要使函數(shù)$y=\sqrt{{{log}_{\frac{1}{3}}}(3x-4)}$有意義,只需3x-4>0,且log${\;}_{\frac{1}{3}}$(3x-4)≥0,解不等式即可得到所求定義域.

解答 解:要使函數(shù)$y=\sqrt{{{log}_{\frac{1}{3}}}(3x-4)}$有意義,
只需3x-4>0,且log${\;}_{\frac{1}{3}}$(3x-4)≥0,
解得x>$\frac{4}{3}$且3x-4≤1,
即為$\frac{4}{3}$<x≤$\frac{5}{3}$.
函數(shù)$y=\sqrt{{{log}_{\frac{1}{3}}}(3x-4)}$的定義域為($\frac{4}{3}$,$\frac{5}{3}$].
故答案為:($\frac{4}{3}$,$\frac{5}{3}$].

點評 本題考查函數(shù)的定義域的求法,注意運(yùn)用偶次根式被開方數(shù)非負(fù),對數(shù)的真數(shù)大于0,考查對數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列說法錯誤的是( 。
A.如果命題“非p”與命題“p∨q”都是真命題,那么命題q一定是真命題
B.命題“若a=0,則ab=0”的否命題是:“若a≠0,則ab≠0”
C.若命題p:?x0∈R,x02+2x0-3<0,則非p:?x∈R,x2+2x-3≥0
D.“a=-2”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.將函數(shù)y=sin(2x+$\frac{π}{3}$)的圖象經(jīng)怎樣平移后得到y(tǒng)=sin(2x+$\frac{π}{6}$)( 。
A.向左平移$\frac{π}{12}$B.向左平移$\frac{π}{6}$C.向右平移$\frac{π}{12}$D.向右平移$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)已知角α終邊上一點P(-4,3),求$\frac{{cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}}$的值
(2)已知cos(π+α)=-$\frac{1}{2}$,且α是第四象限角,計算:$\frac{sin[α+(2n+1)π]+sin[α-(2n+1)π]}{sin(α+2nπ)•cos(α-2nπ)}$(n∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知x,y∈R+,且xy=100,則x+y的最小值為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=2sinxcos(φ-x)-\frac{1}{2}$($0<φ<\frac{π}{2}$)的圖象過點$(\frac{π}{3},1)$.
(Ⅰ)求φ的值;        
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在等比數(shù)列{an}中,公比q≠1,等差數(shù)列{bn}滿足b1=a1=3,b4=a2,b13=a3
(1)求數(shù)列{an}和{bn}的通項公式;
(2)記cn=(-1)nbn+an,求數(shù)列{cn}的前2n項和S2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.從甲、乙、丙、丁、戊5名同學(xué)中任選4名參加接力賽,其中,甲不跑第一棒,乙、丙不跑相鄰兩棒,則不同的選排總數(shù)為( 。
A.48B.56C.60D.68

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知命題p:若0<x<$\frac{π}{2}$,則sin>x:命題q:若0<x<$\frac{π}{2}$,則tanx>x.在命題①p∧q;②p∨q;③p∨(¬q);④(¬p)∨q中,真命題是( 。
A.①③B.①④C.②③D.②④

查看答案和解析>>

同步練習(xí)冊答案