10.函數(shù)$f(x)={2}^{x}+\frac{1}{4•{2}^{x}}$的最小值為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

分析 利用基本不等式的性質(zhì)即可得出

解答 解:∵2x>0,
∴函數(shù)$f(x)={2}^{x}+\frac{1}{4•{2}^{x}}$$≥2\sqrt{{2}^{x}×\frac{1}{4•{2}^{x}}}=1$,當(dāng)且僅當(dāng)x=-1時(shí)取等號(hào).
故函數(shù)$f(x)={2}^{x}+\frac{1}{4•{2}^{x}}$的最小值為1.
故選C

點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.一個(gè)幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積為64+32$\sqrt{2}$cm2,體積為$\frac{160}{3}$cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)=sinωx-cosωx(ω>$\frac{1}{4}$,x∈R),若f(x)的任何一條對(duì)稱軸與x軸交點(diǎn)的橫坐標(biāo)都不屬于區(qū)間(2π,3π),則ω的取值范圍是(  )
A.[$\frac{3}{8}$,$\frac{11}{12}$]∪[$\frac{11}{8}$,$\frac{19}{12}$]B.($\frac{1}{4}$,$\frac{5}{12}$]∪[$\frac{5}{8}$,$\frac{3}{4}$]
C.[$\frac{3}{8}$,$\frac{7}{12}$]∪[$\frac{7}{8}$,$\frac{11}{12}$]D.($\frac{1}{4}$,$\frac{3}{4}$]∪[$\frac{9}{8}$,$\frac{17}{12}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若${log_a}\frac{4}{5}<1$(a>0,且a≠1),則實(shí)數(shù)a的取值范圍是( 。
A.$(0,\frac{4}{5})$B.$(\frac{4}{5},+∞)$C.$(\frac{4}{5},1)$D.$(0,\frac{4}{5})∪(1,+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,四個(gè)頂點(diǎn)構(gòu)成的四邊形的面積為4,過原點(diǎn)的直線l(斜率不為零)與橢圓C交于A,B兩點(diǎn),F(xiàn)1,F(xiàn)2為橢圓的左、右焦點(diǎn),則四邊形AF1BF2的周長為( 。
A.4B.$4\sqrt{3}$C.8D.$8\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在等比數(shù)列{an}中,${a}_{2}{a}_{3}{a}_{4}=\frac{27}{64}$,公比q=2,數(shù)列{bn}是等差數(shù)列,且b7=a5,則b3+b11=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x+1)是定義在R上的奇函數(shù),若對(duì)于任意給定的不等實(shí)數(shù)x1,x2不等式(x1-x2)[f(x1)-f(x2)]<0恒成立,則不等式f(2x-3)>0的解集為( 。
A.(0,+∞)B.(1,+∞)C.(2,+∞)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知Sn為等比數(shù)列{an}的前n項(xiàng)和,且S5=S4-2a4,則$\frac{{S}_{5}}{{S}_{4}}$等于(  )
A.-$\frac{33}{15}$B.$\frac{33}{15}$C.-$\frac{33}{17}$D.$\frac{33}{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)正數(shù)x,y滿足x2+$\frac{{y}^{2}}{2}$=1,則x•$\sqrt{1+{y}^{2}}$的最大值為( 。
A.$\frac{3}{2}$B.$\frac{3\sqrt{2}}{2}$C.$\frac{3}{4}$D.$\frac{3\sqrt{2}}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案