分析 推導(dǎo)出AD⊥DC,AD⊥PD,從而∠PDC是二面角P-AD-C的平面角,由此能求出二面角P-AD-C的正切值.
解答 解:∵ABCD是矩形,∴AD⊥DC,
又∵平面PDC⊥平面ABCD,且平面PDC∩平面ABCD=CD,
AD?平面ABCD,
∴AD⊥平面PCD,
又CD、PD?平面PDC,
∴AD⊥DC,AD⊥PD,
∴∠PDC是二面角P-AD-C的平面角,
在Rt△PDE中,PD=4,
DE=$\frac{1}{2}$AB=3,PE=$\sqrt{P{D}^{2}-D{E}^{2}}$=$\sqrt{7}$,
∴tan$∠PDC=\frac{PE}{DE}$=$\frac{\sqrt{7}}{3}$,
∴二面角P-AD-C的正切值為$\frac{\sqrt{7}}{3}$.
點(diǎn)評 本題考查二面角的正切值的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{12}+\frac{y^2}{8}$=1 | B. | $\frac{y^2}{12}+\frac{x^2}{8}$=1 | C. | $\frac{x^2}{6}+\frac{y^2}{4}$=1 | D. | $\frac{y^2}{6}+\frac{y^2}{4}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com