【題目】如圖1,梯形中, 為中點(diǎn).將沿翻折到的位置,如圖2.
(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)設(shè)分別為和的中點(diǎn),試比較三棱錐和三棱錐(圖中未畫出)的體積大小,并說明理由.
【答案】(Ⅰ)證明見解析;(Ⅱ) ;(Ⅲ)體積相等.
【解析】試題分析:(Ⅰ)由題意,利用線面垂直的判定定理,證得平面,再利用面面垂直的判定定理,即可證得,所以平面 平面.
(Ⅱ)根據(jù)題設(shè)中的垂直關(guān)系,建立空間直角坐標(biāo)系,求出平面和平面的各自一個(gè)法向量,利用向量所成的角,即可求解線面角的正弦值.
(Ⅲ)方法一:先證得平面,可得點(diǎn)到平面的距離相等,即可得到三棱錐和同底等高,所以體積相等;
方法二:取中點(diǎn),連接, , ,分別得到, ,進(jìn)而證得平面,即可點(diǎn)、到平面的距離相等,所以三棱錐和同底等高,所以體積相等;
試題解析:
(Ⅰ)證明:因?yàn)?/span>, , , , 平面
所以平面因?yàn)?/span>平面,所以平面 平面
(Ⅱ)解:在平面內(nèi)作,
由平面,建系如圖.
則, , , , . , , ,
設(shè)平面的法向量為,則
,即,令得, ,
所以是平面的一個(gè)方向量.
所以與平面所成角的正弦值為.
(Ⅲ)解:三棱錐和三棱錐的體積相等.
理由如:
方法一:由, ,知,則
因?yàn)?/span>平面,所以平面.
故點(diǎn)、到平面的距離相等,有三棱錐和同底等高,所以體積相等.
方法二:如圖,取中點(diǎn),連接, , .
因?yàn)樵?/span>中, , 分別是, 的中點(diǎn),所以
因?yàn)樵谡叫?/span>中, , 分別是, 的中點(diǎn),所以
因?yàn)?/span>, , 平面, , 平面
所以平面 平面
因?yàn)?/span>平面,所以平面
故點(diǎn)、到平面的距離相等,有三棱錐和同底等高,所以體積相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購,網(wǎng)上叫外賣也開始成為不少人日常生活中不可或缺的一部分,為了解網(wǎng)絡(luò)外賣在市的普及情況, 市某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了關(guān)于網(wǎng)絡(luò)外賣的問卷調(diào)查,并從參與調(diào)查的網(wǎng)民中抽取了200人進(jìn)行抽樣分析,得到表格(單位:人).
(1)根據(jù)表中數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認(rèn)為市使用網(wǎng)絡(luò)外賣的情況與性別有關(guān)?
(2)①現(xiàn)從所抽取的女網(wǎng)民中利用分層抽樣的方法再抽取5人,再從這5人中隨機(jī)選出了3人贈送外賣優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用網(wǎng)絡(luò)外賣的概率;
②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機(jī)抽取10人贈送禮品,記其中經(jīng)常使用網(wǎng)絡(luò)外賣的人數(shù)為,求的數(shù)學(xué)期望和方差.
參考公式: ,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】狄利克雷函數(shù)是高等數(shù)學(xué)中的一個(gè)典型函數(shù),若,則稱為狄利克雷函數(shù).對于狄利克雷函數(shù),給出下面4個(gè)命題:①對任意,都有;②對任意,都有;③對任意,都有, ;④對任意,都有.其中所有真命題的序號是( )
A. ①④ B. ②③ C. ①②③ D. ①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列中, , 成等差數(shù)列;數(shù)列中的前項(xiàng)和為, .
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某協(xié)會對,兩家服務(wù)機(jī)構(gòu)進(jìn)行滿意度調(diào)查,在,兩家服務(wù)機(jī)構(gòu)提供過服務(wù)的市民中隨機(jī)抽取了人,每人分別對這兩家服務(wù)機(jī)構(gòu)進(jìn)行獨(dú)立評分,滿分均為分.整理評分?jǐn)?shù)據(jù),將分?jǐn)?shù)以為組距分成組:,,,,,,得到服務(wù)機(jī)構(gòu)分?jǐn)?shù)的頻數(shù)分布表,服務(wù)機(jī)構(gòu)分?jǐn)?shù)的頻率分布直方圖:
定義市民對服務(wù)機(jī)構(gòu)評價(jià)的“滿意度指數(shù)”如下:
分?jǐn)?shù) | |||
滿意度指數(shù) | 0 | 1 | 2 |
(1)在抽樣的人中,求對服務(wù)機(jī)構(gòu)評價(jià)“滿意度指數(shù)”為的人數(shù);
(2)從在,兩家服務(wù)機(jī)構(gòu)都提供過服務(wù)的市民中隨機(jī)抽取人進(jìn)行調(diào)查,試估計(jì)對服務(wù)機(jī)構(gòu)評價(jià)的“滿意度指數(shù)”比對服務(wù)機(jī)構(gòu)評價(jià)的“滿意度指數(shù)”高的概率;
(3)如果從,服務(wù)機(jī)構(gòu)中選擇一家服務(wù)機(jī)構(gòu),以滿意度出發(fā),你會選擇哪一家?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)求證:“”是“函數(shù)有且只有一個(gè)零點(diǎn)” 的充分必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的各項(xiàng)均為正數(shù),前項(xiàng)和為,且.
(1)求證:數(shù)列是等差數(shù)列;
(2)設(shè),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng)a1=1,an+1= (n∈N*).
(1)證明:數(shù)列是等比數(shù)列;
(2)設(shè)bn=,求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校初三年級有名學(xué)生,隨機(jī)抽查了名學(xué)生,測試分鐘仰臥起坐的成績(次數(shù)),將數(shù)據(jù)整理后繪制成如圖所示的頻率分布直方圖.用樣本估計(jì)總體,下列結(jié)論正確的是( )
A. 該校初三年級學(xué)生分鐘仰臥起坐的次數(shù)的中位數(shù)為次
B. 該校初三年級學(xué)生分鐘仰臥起坐的次數(shù)的眾數(shù)為次
C. 該校初三年級學(xué)生分鐘仰臥起坐的次數(shù)超過次的人數(shù)約有人
D. 該校初三年級學(xué)生分鐘仰臥起坐的次數(shù)少于次的人數(shù)約為人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com