若平面向量
a
=(1,x)和
b
=(2x+3,-x)互相平行,其中x∈R,則|
a
-
b
|=( 。
A、-2或0
B、2.5
C、2或2
5
D、2或10
考點:平行向量與共線向量,向量的模,平面向量的坐標(biāo)運算
專題:平面向量及應(yīng)用
分析:根據(jù)
a
b
,求出x的值,再計算|
a
-
b
|的值.
解答: 解:∵向量
a
=(1,x)和
b
=(2x+3,-x)互相平行,
∴1•(-x)-x•(2x+3)=0,
解得x=0,或x=-2;
當(dāng)x=0時,
a
-
b
=(1,0)-(3,0)=(-2,0),|
a
-
b
|=2;
當(dāng)x=-2時,
a
-
b
=(1,-2)-(-1,2)=(2,-4),|
a
-
b
|=2
5
;
綜上,|
a
-
b
|的值是2或2
5

故選:C.
點評:本題考查了平面向量的應(yīng)用問題,解題時應(yīng)根據(jù)平面向量的坐標(biāo)運算進(jìn)行解答,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=2sin(
1
2
x-
π
6
)的最值及取得最值時的x的取值集合,以及單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
,
b
為非零向量,且滿足|
a
-
b
|=|
a
|+|
b
|,則
a
b
的關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面α⊥平面β,α∩β=n,直線l?α,直線m?β,則下列說法正確的個數(shù)是( 。
①若l⊥n,l⊥m,則l⊥β;②若l∥n,則l∥β;③若m⊥n,l⊥m,則m⊥α.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈(-
π
2
,
π
2
),且sin2α=cos(α-
π
4
),求α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P為△ABC所在平面內(nèi)一點,且滿足
AP
=
1
5
AC
+
2
5
AB
,則△APB的面積與△APC的面積之比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
、
b
滿足|
a
|=|
b
|=1,
a
•(
a
+
b
)=
3
2
,記
a
b
的夾角為θ,則函數(shù)y=sin(θx+
π
6
)的最小正周期為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:三角形的中位線長度等于底邊長度的一半.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲乙丙三位棋手按如下規(guī)則進(jìn)行比賽:第一局由甲乙參加而丙輪空,由第一局的勝者與丙進(jìn)行第二局比賽,敗者輪空,使用這種方式一直進(jìn)行到其中一人連勝兩局為止,此人成為整場比賽的優(yōu)勝者.甲乙丙勝各局的概率都為0.5,求甲乙丙分別成為整場比賽優(yōu)勝者的概率.

查看答案和解析>>

同步練習(xí)冊答案