【題目】如圖是函數(shù)的部分圖象,MN是它與x軸的兩個(gè)不同交點(diǎn),DMN之間的最高點(diǎn)且橫坐標(biāo)為,點(diǎn)是線段DM的中點(diǎn).

1)求函數(shù)的解析式及上的單調(diào)增區(qū)間;

2)若時(shí),函數(shù)的最小值為,求實(shí)數(shù)a的值.

【答案】1;單調(diào)遞增區(qū)間為;(2

【解析】

1)結(jié)合圖象特點(diǎn)和代入特殊點(diǎn)進(jìn)行求解得出的解析式,進(jìn)而根據(jù)正弦函數(shù)的單調(diào)性求單調(diào)增區(qū)間.

2)由求出的值域,令,結(jié)合二次函數(shù)的性質(zhì)進(jìn)行分類討論可求出a的值.

1)取MN中點(diǎn)為H,則,

因?yàn)?/span>FDM中點(diǎn),且Fy軸上,

,

所以,,則,

又因?yàn)?/span>,則

所以,

,

,

又因?yàn)?/span>,則,

所以,

,

又因?yàn)?/span>,則單調(diào)遞增區(qū)間為

2)因?yàn)?/span>

所以,

,則,對(duì)稱軸為

①當(dāng)時(shí),即時(shí),,

②當(dāng)時(shí),即時(shí),(舍),

③當(dāng)時(shí),即時(shí),(舍),

綜上可得:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓.

1)求圓心C的坐標(biāo)及半徑r的大小;

2)已知不過原點(diǎn)的直線l與圓C相切,且在x軸、y軸上的截距相等,求直線l的方程;

3)從圓外一點(diǎn)向圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,離心率為,過的直線與橢圓交于兩點(diǎn),且的周長為8.

(1)求橢圓的方程;

(2)直線過點(diǎn),且與橢圓交于兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐,底面是邊長為的菱形,側(cè)面底面,, , 中點(diǎn),點(diǎn)在側(cè)棱.

求證: ;

中點(diǎn),求二面角的余弦值;

是否存在,使平面?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)當(dāng)時(shí),求不等式的解集;

2)若不等式的解集包含[–1,1],求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.點(diǎn)(2,0)關(guān)于直線yx+1的對(duì)稱點(diǎn)為(﹣13

B.過(x1,y1),(x2,y2)兩點(diǎn)的直線方程為

C.經(jīng)過點(diǎn)(1,1)且在x軸和y軸上截距都相等的直線方程為x+y20xy0

D.直線xy40與兩坐標(biāo)軸圍成的三角形的面積是8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明家的晚報(bào)在下午任何一個(gè)時(shí)間隨機(jī)地被送到,他們一家人在下午任何一個(gè)時(shí)間隨機(jī)地開始晚餐.為了計(jì)算晚報(bào)在晚餐開始之前被送到的概率,某小組借助隨機(jī)數(shù)表的模擬方法來計(jì)算概率,他們的具體做法是將每個(gè)1分鐘的時(shí)間段看作個(gè)體進(jìn)行編號(hào),編號(hào)為01編號(hào)為02,依此類推,編號(hào)為90.在隨機(jī)數(shù)表中每次選取一個(gè)四位數(shù),前兩位表示晚報(bào)時(shí)間,后兩位表示晚餐時(shí)間,如果讀取的四位數(shù)表示的晚報(bào)晚餐時(shí)間有一個(gè)不符合實(shí)際意義,視為這次讀取的無效數(shù)據(jù)(例如下表中的第一個(gè)四位數(shù)6548中的65不符合晚報(bào)時(shí)間).按照從左向右,讀完第一行,再從左向右讀第二行的順序,讀完下表,用頻率估計(jì)晚報(bào)在晚餐開始之前被送到的概率為(

6548 1176 7417 4685 0950 5804 7769 7473 0395 7186

8012 4356 3517 7270 8015 4531 8223 7421 1157 8263

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐SABCD中,底面ABCD是邊長為4的菱形,∠BAD60°,SASD2,點(diǎn)E是棱AD的中點(diǎn),點(diǎn)F在棱SC上,且λ,SA//平面BEF

1)求實(shí)數(shù)λ的值;

2)求三棱錐FEBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校組織了一次新高考質(zhì)量測(cè)評(píng),在成績統(tǒng)計(jì)分析中,某班的數(shù)學(xué)成績的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見部分如下,據(jù)此解答如下問題:

1)求該班數(shù)學(xué)成績?cè)?/span>的頻率及全班人數(shù);

2)根據(jù)頻率分布直方圖估計(jì)該班這次測(cè)評(píng)的數(shù)學(xué)平均分;

3)若規(guī)定90分及其以上為優(yōu)秀,現(xiàn)從該班分?jǐn)?shù)在80分及其以上的試卷中任取2份分析學(xué)生得分情況,求在抽取的2份試卷中至少有1份優(yōu)秀的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案