某校同學(xué)設(shè)計一個如圖所示的“蝴蝶形圖案(陰影區(qū)域)”,其中、是過拋物線焦點的兩條弦,且其焦點,點軸上一點,記,其中為銳角.

(1)求拋物線方程;

(2)如果使“蝴蝶形圖案”的面積最小,求的大小?

 

【答案】

(1);(2).

【解析】

試題分析:(1)拋物線焦點在軸上,其標準方程為,其中焦點坐標為;(2)顯然要把蝴蝶形圖案”的面積表示為的函數(shù),由于,因此要求這個面積,只要求出的長,當然它們都要用來表示,為此我們設(shè),則點坐標為,利用點在拋物線上,代入可得出關(guān)于的二次方程,解方程求出換成,,可依次得到,由此我們就可把面積表示了,接下來只是涉及到求函數(shù)的最大值而已.

試題解析:(1)由拋物線焦點得,拋物線方程為

(2)設(shè),則點

所以,,既

解得 

同理:

“蝴蝶形圖案”的面積

時,即“蝴蝶形圖案”的面積為8.

考點:(1)拋物線的標準方程;(2)圓錐曲線綜合問題.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)某校同學(xué)設(shè)計一個如圖所示的“蝴蝶形圖案(陰影區(qū)域)”,其中AC、BD是過拋物線Γ焦點F的兩條弦,且其焦點F(0,1),
AC
BD
=0
,點E為y軸上一點,記∠EFA=α,其中α為銳角.
(1)求拋物線Γ方程;
(2)求證:|AF|=
2(cosα+1)
sin2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海市楊浦區(qū)高三上學(xué)期學(xué)業(yè)質(zhì)量調(diào)研文科數(shù)學(xué)試卷(解析版) 題型:解答題

某校同學(xué)設(shè)計一個如圖所示的“蝴蝶形圖案(陰影區(qū)域)”,其中、是過拋物線焦點的兩條弦,且其焦點,,點軸上一點,記,其中為銳角.

(1)求拋物線方程;

(2)求證:

 

查看答案和解析>>

同步練習(xí)冊答案