精英家教網 > 高中數學 > 題目詳情
已知tanα=3,求值:
4sin(π-α)-sin(
2
-α)
3cos(-α+
π
2
)-5cos(α-5π)
分析:所求式子利用誘導公式化簡,再利用同角三角函數間的基本關系化簡,將tanα的值代入計算即可求出值.
解答:解:∵tanα=3,
∴原式=
4sinα+cosα
3sinα+5cosα
=
4tanα+1
3tanα+5
=
13
14
點評:此題考查了運用誘導公式化簡求值,以及同角三角函數間的基本關系,熟練掌握誘導公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知tanα=3,求下列各式的值.
(1)
4sin(α-π)-sin(
2
-α)
3cos(α-
π
2
)-5cos(α-5π)

(2)
sin2α-2sinαcosα-cos2α
4cos2α-3sin2α

查看答案和解析>>

科目:高中數學 來源: 題型:

已知tanα=3,求下列各式的值.
(1)
sin2α-2sinαcosα-cos2α4cos2α-3sin2α

(2)2sin2α-sinαcosα+1.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(α)=
sin(
π
2
+α)+3sin(-π-α)
2cos(
11π
2
-α)-cos(5π-α)

(Ⅰ)化簡f(α);
(Ⅱ)已知tanα=3,求f(α)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知tanα=3,求值
(1)
4sinα-2cosα3sinα+5cosα

(2)2sin2α+sinαcosα-3cos2α

查看答案和解析>>

科目:高中數學 來源: 題型:

求值:
(1)log3
1
9
+lg25+lg4+ln
e
;
(2)已知
tanθ=3 ,求2sinθcosθ+cos2θ
的值.

查看答案和解析>>

同步練習冊答案