分析 (1)可令3x=4y=6z=k,利用指對數(shù)互化,對數(shù)的運(yùn)算性質(zhì)解答.
(2)計(jì)算等式的左邊和右邊的值相等,等式得到證明.
解答 解:(1)令3x=4y=6z=k,
則 x=log3k,y=log4k,z=log6k,
∵2x=py,
∴2log3k=plog4k,
∴P=$\frac{2{log}_{3}k}{{log}_{4}k}$=$\frac{2{log}_{k}4}{{log}_{k}3}$=2log34.
證明:(2)∵$\frac{1}{z}$-$\frac{1}{x}$=logk6-logk3=logk2,
$\frac{1}{2y}$=$\frac{1}{2}$•logk4=logk2,
∴$\frac{1}{z}$-$\frac{1}{x}$=$\frac{1}{2y}$.
點(diǎn)評 本題考查指數(shù)式與對數(shù)式得轉(zhuǎn)化,對數(shù)運(yùn)算性質(zhì)的應(yīng)用,體現(xiàn)轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2) | B. | ($\frac{1}{2}$,+∞) | C. | [$\frac{1}{2}$,+∞) | D. | (-∞,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ac>bc | B. | $\frac{a}{c}$>$\frac{c}$ | C. | a+c>b+c | D. | ac2>bc2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com