【題目】為了研究某學(xué)科成績(jī)(滿分100分)是否與學(xué)生性別有關(guān),采用分層抽樣的方法,從高二年級(jí)抽取了30名男生和20名女生的該學(xué)科成績(jī),得到下圖所示女生成績(jī)的莖葉圖.其中抽取的男生中有21人的成績(jī)?cè)?0分以下,規(guī)定80分以上為優(yōu)秀(含80分).

(1)請(qǐng)根據(jù)題意,將2×2列聯(lián)表補(bǔ)充完整;

優(yōu)秀

非優(yōu)秀

總計(jì)

男生

女生

總計(jì)

50

(2)據(jù)此列聯(lián)表判斷,是否有90%的把握認(rèn)為該學(xué)科成績(jī)與性別有關(guān)?

附: ,其中.

參考數(shù)據(jù)

當(dāng)≤2.706時(shí),無(wú)充分證據(jù)判定變量A,B有關(guān)聯(lián),可以認(rèn)為兩變量無(wú)關(guān)聯(lián);

當(dāng)>2.706時(shí),有90%的把握判定變量A,B有關(guān)聯(lián);

當(dāng)>3.841時(shí),有95%的把握判定變量A,B有關(guān)聯(lián);

當(dāng)>6.635時(shí),有99%的把握判定變量A,B有關(guān)聯(lián).

【答案】(1)見(jiàn)解析;(2)有關(guān).

【解析】試題分析:

(1)利用題意確定各個(gè)性別優(yōu)秀的人數(shù),據(jù)此即可補(bǔ)充完整列聯(lián)表;

(2)結(jié)合(1)中的列聯(lián)表求得,因此有90%的把握認(rèn)為該學(xué)科成績(jī)與性別有關(guān).

試題解析:

(1)根據(jù)圖示,將2×2列聯(lián)表補(bǔ)充完整如下:

優(yōu)秀

非優(yōu)秀

總計(jì)

男生

9

21

30

女生

11

9

20

總計(jì)

20

30

50

(2)根據(jù)列聯(lián)表可以求得

因此有90%的把握認(rèn)為該學(xué)科成績(jī)與性別有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(λx+1)ln x-x+1.

(1)若λ=0,求f(x)的最大值;

(2)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+y+1=0垂直,證明:>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017銀川一中高考模擬文一個(gè)正方體的平面展開(kāi)圖及該正方體直觀圖的示意圖如圖所示,在正方體中,設(shè)BC的中點(diǎn)為M,GH的中點(diǎn)為N。

(1)請(qǐng)將字母F,G,H標(biāo)記在正方體相應(yīng)的頂點(diǎn)處(不需說(shuō)明理由);

(2)證明:直線MN∥平面BDH;

(3)過(guò)點(diǎn)M,N,H的平面將正方體分割為兩部分,求這兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,側(cè)面底面,為正三角形,,,點(diǎn),分別為線段、的中點(diǎn),、分別為線段上一點(diǎn),且.

(1)確定點(diǎn)的位置,使得平面;

(2)試問(wèn):直線上是否存在一點(diǎn),使得平面與平面所成銳二面角的大小為,若存在,求的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某醫(yī)學(xué)院讀書協(xié)會(huì)欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,該協(xié)會(huì)分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下頻數(shù)分布直方圖:

該協(xié)會(huì)確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的頻率;

(2)已知選取的是1月與6月的兩組數(shù)據(jù).

(i)請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出就診人數(shù)關(guān)于晝夜溫差的線性回歸方程;

(ii)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該協(xié)會(huì)所得線性回歸方程是否理想?

(參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某居民小區(qū)要建造一座八邊形的休閑小區(qū),它的主體造型的平面圖是由兩個(gè)相同的矩形ABCD和EFGH構(gòu)成的,是面積為200平方米的十字形地帶.計(jì)劃在正方MNPQ上建一座花壇,造價(jià)是每平方米4 200元,在四個(gè)相同的矩形(圖中陰影部分)上鋪上花崗巖地坪,造價(jià)是每平方米210元,再在四個(gè)空角上鋪上草坪,造價(jià)是每平方米80元.

(1)設(shè)總造價(jià)是S元,AD長(zhǎng)為x米,試建立S關(guān)于x的函數(shù)關(guān)系式;

(2)當(dāng)x為何值時(shí),S最?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某幾何體的三視圖,則該幾何體的體積為( )

A. 12 B. 15 C. 18 D. 21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠在甲、乙兩地的兩個(gè)分廠各生產(chǎn)某種機(jī)器12臺(tái)和6臺(tái). 現(xiàn)銷售給A10臺(tái),B8臺(tái). 已知從甲地調(diào)運(yùn)1臺(tái)至A地、B地的運(yùn)費(fèi)分別為400元和800,從乙地調(diào)運(yùn)1臺(tái)至A地、B地的費(fèi)用分別為300元和500元.

(1)設(shè)從甲地調(diào)運(yùn)x臺(tái)至A求總費(fèi)用y關(guān)于臺(tái)數(shù)x的函數(shù)解析式;

(2)若總運(yùn)費(fèi)不超過(guò)9 000,問(wèn)共有幾種調(diào)運(yùn)方案;

(3)求出總運(yùn)費(fèi)最低的調(diào)運(yùn)方案及最低的費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足 , 是數(shù)列的前項(xiàng)和.

(1)求數(shù)列的通項(xiàng)公式

(2)令,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案