7.若${(x+\frac{1}{2x})^n}$(n≥4,n∈N*)的二項(xiàng)展開式中前三項(xiàng)的系數(shù)依次成等差數(shù)列,則n=8.

分析 ${(x+\frac{1}{2x})^n}$(n≥4,n∈N*)的二項(xiàng)展開式中前三項(xiàng)的系數(shù)依次為:1,$\frac{1}{2}n$,$(\frac{1}{2})^{2}$${∁}_{n}^{2}$,由于此三個數(shù)成等差數(shù)列,可得2×$\frac{1}{2}n$=1+$(\frac{1}{2})^{2}$${∁}_{n}^{2}$,解出即可得出.

解答 解:${(x+\frac{1}{2x})^n}$(n≥4,n∈N*)的二項(xiàng)展開式中前三項(xiàng)的系數(shù)依次為:1,$\frac{1}{2}n$,$(\frac{1}{2})^{2}$${∁}_{n}^{2}$,
由于此三個數(shù)成等差數(shù)列,∴2×$\frac{1}{2}n$=1+$(\frac{1}{2})^{2}$${∁}_{n}^{2}$,
化為:n2-9n+8=0,解得n=8或1(舍去).
故答案為:8.

點(diǎn)評 本題考查了二項(xiàng)式定理的應(yīng)用、等差數(shù)列的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)$f(x)=\left\{\begin{array}{l}kx-k(x≥0)\\{x^2}+2ax-{({a-2})^2}(x<0)\end{array}\right.$,其中a∈R,若對任意的非零實(shí)數(shù)x1,存在唯一的非零實(shí)數(shù)x2(x2≠x1),使得f(x2)=f(x1)成立,則k的最小值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若復(fù)數(shù)z滿足(3-4i+z)i=2+i,則復(fù)數(shù)z所對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)f(x)=$\left\{\begin{array}{l}{lo{g}_{4}x-1,x>0}\\{{2}^{x}-x+\frac{1}{3}{a}^{3},x≤0}\end{array}\right.$,若f(f(4))=$\frac{11}{3}$,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若以直角坐標(biāo)系xOy的O為極點(diǎn),Ox為極軸,選擇相同的長度單位建立極坐標(biāo)系,得曲線的極坐標(biāo)方程是ρsin2θ=6cosθ.
(1)將曲線C的極坐標(biāo)方程ρsin2θ=6cosθ化為直角坐標(biāo)方程,并指出曲線是什么曲線;
(2)若直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{3}{2}+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù)),當(dāng)直線l與曲線C相交于A,B兩點(diǎn),求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)$f(x)=\frac{{m•{4^x}+1}}{2^x}$是偶函數(shù).
(1)求實(shí)數(shù)m的值;
(2)若關(guān)于x的不等式2k•f(x)>3k2+1在(-∞,0)上恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知a>2,b>2,直線$y=-\frac{a}x+b$與曲線(x-1)2+(y-1)2=1只有一個公共點(diǎn),則ab的取值范圍為( 。
A.$(4,6+4\sqrt{2})$B.$(4,6+4\sqrt{2}]$C.$[6+4\sqrt{2},+∞)$D.$(6+4\sqrt{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,橢圓C和拋物線y2=x交于M,N兩點(diǎn),且直線MN恰好通過橢圓C的右焦點(diǎn).
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)A為橢圓的右頂點(diǎn),經(jīng)過原點(diǎn)的直線和橢圓C交于B,D兩點(diǎn),設(shè)直線AB與AD的斜率分別為k1,k2.問k1•k2是否為定值?若為定值,請求出;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)復(fù)數(shù)z滿足$\frac{z+1}{z-2}=1-3i$,則|z|=(  )
A.5B.$\sqrt{5}$C.2D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案