12.若p:x∈A={x|x2-2x-3≤0,x∈R}q:x∈B={x|x2-2mx+m2-9≤0,x∈R,m∈R}
(1)若A∩B=[0,3],求實(shí)數(shù)m的值;
(2)若q是?p的充分不必要條件,求實(shí)數(shù)m的取值范圍.

分析 求出集合A中不等式的解集,確定出集合A,求出集合B中不等式的解集,表示出集合B,
(1)由兩集合的交集為[0,3],列出關(guān)于m的方程,求出方程的解即可得到m的值;
(2)根據(jù)集合的包含關(guān)系判斷即可.

解答 解:由集合A中的不等式x2-2x-3≤0,
變形得:(x-3)(x+1)≤0,
解得:-1≤x≤3,
∴集合A=[-1,3],
由集合B中的不等式x2-2mx+m2-9≤0,
因式分解得:(x-m-3)(x-m+3)≤0,
解得:m-3≤x≤m+3,
∴集合B=[m-3,m+3],
(1)∵A∩B=[0,3],
∴m-3=0,m+3≥3,
解得:m=3,
則m的值為:3.
(2)若q是?p的充分不必要條件,
則m-3≥3或m+3≤-1,
解得:m≥6或m≤-4.

點(diǎn)評(píng) 此題考查了交、并、補(bǔ)集的混合運(yùn)算,以及必要條件,充分條件及充要條件的判斷,其中根據(jù)題意列出關(guān)于m的方程及不等式是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.甲乙兩人投球命中率分別為0.5、0.4,甲乙兩人各投一次,恰好命中一次的概率為(  )
A.0.5B.0.4C.0.2D.0.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.小龍與小虎約好國慶節(jié)去天柱山游玩,決定十月一日早晨7:45到8:15在高河新車站會(huì)面,并約定先到者等候另一人15分鐘,若未等到,可直接乘車前往天柱山,求小龍與小虎一同前往天柱山的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{3x}{2x+3}$,數(shù)列{an}滿足a1=1,an+1=f(an),n∈N*
(1)求a2,a3,a4的值;
(2)求證:數(shù)列{$\frac{1}{{a}_{n}}$}是等差數(shù)列;
(3)設(shè)數(shù)列{bn}滿足bn=an-1•an(n≥2),b1=3,Sn=b1+b2+…+bn,若${S_n}<\frac{m-2014}{2}$對(duì)一切n∈N*成立,求最小正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左,右焦點(diǎn)分別為F1,F(xiàn)2,過F1的直線在左支相交于A、B兩點(diǎn).如果|AF2|+|BF2|=2|AB|,那么|AB|=4a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知△ABC的頂點(diǎn)A(5,1),AB邊上的中線CM所在直線方程為2x-y-5=0,AC邊上的高BH所在直線的方程為x-2y-5=0.求
(1)求點(diǎn)H的坐標(biāo);
(2)若$\overrightarrow{BP}=\frac{1}{2}(\overrightarrow{BA}+\overrightarrow{BH})$,求直線BP的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如果方程${x^2}+\frac{y^2}{k}=1$表示焦點(diǎn)在y軸上的橢圓,那么實(shí)數(shù)k的取值范圍是( 。
A.(0,+∞)B.(0,2)C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)的左焦點(diǎn)為F1(-4,0),則m=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在直角坐標(biāo)平面內(nèi),把橫坐標(biāo)與縱坐標(biāo)都為整數(shù)的點(diǎn)稱為整點(diǎn).已知區(qū)域D:$\left\{\begin{array}{l}{y≤2x}\\{x+y≤n}\\{y≥0}\end{array}\right.$,其中n∈N*.記區(qū)域D內(nèi)的整點(diǎn)個(gè)數(shù)為an
(1)求a1,a2,a3的值;
(2)求an的表達(dá)式(n≥4,n∈N*

查看答案和解析>>

同步練習(xí)冊(cè)答案