【題目】已知函數(shù)(為常數(shù)).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)是否存在正實(shí)數(shù),使得對(duì)任意,都有,若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由;
(Ⅲ)當(dāng)時(shí), ,對(duì)恒成立,求整數(shù)的最大值.
【答案】(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ)2.
【解析】
(Ⅰ)由,討論和導(dǎo)數(shù)的正負(fù),從而可得函數(shù)的單調(diào)性;
(Ⅱ)由正實(shí)數(shù)a,結(jié)合(Ⅰ)的單調(diào)性可得,即g(x)=f(x)+在上單調(diào)遞減,求導(dǎo)可得a對(duì)恒成立,分析不等式右邊函數(shù)的最值即可;
(Ⅲ)由題意得lnx對(duì)恒成立,當(dāng)x=1時(shí),b; 又 b,通過證明b=2時(shí)不等式成立即可得解.
(Ⅰ)∵,.
∴(。┤,則恒成立f(x)在上單調(diào)遞增;
(ⅱ)若,則.
令,解得;令,解得.
在上單調(diào)遞減,在上單調(diào)遞增.
綜上:當(dāng)時(shí),f(x)在上單調(diào)遞增;
當(dāng)時(shí),f(x)在上單調(diào)遞減,在上單調(diào)遞增.
(Ⅱ)滿足條件的a不存在.理由如下:
若,由(Ⅰ)可知,函數(shù)f(x)=alnx+在為增函數(shù);
不妨設(shè),
則,即
∴由題意:g(x)=f(x)+在上單調(diào)遞減,
∴在上恒成立,即a對(duì)恒成立;
又在上單調(diào)遞減;
∴a;故滿足條件的正實(shí)數(shù)a不存在.
(Ⅲ)當(dāng)a=1時(shí),使對(duì)恒成立
即lnx對(duì)恒成立.
∴ 當(dāng)x=1時(shí),b; 又 b
下面證明:當(dāng)b=2時(shí),lnx對(duì)恒成立.
當(dāng)b=2時(shí),lnx.
設(shè)g(x)=,則.
易知: ,
∴當(dāng)時(shí),;當(dāng)時(shí),.
∴g(x)
即當(dāng)b=2時(shí),lnx對(duì)恒成立.∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在棱長(zhǎng)均為的四面體中,點(diǎn)為的中點(diǎn),點(diǎn)為的中點(diǎn).若點(diǎn),是平面內(nèi)的兩動(dòng)點(diǎn),且,,則的面積為( )
A. B. 3
C. D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的零點(diǎn);
(Ⅱ)若函數(shù)對(duì)任意實(shí)數(shù)都有成立,求函數(shù)的解析式;
(Ⅲ)若函數(shù)在區(qū)間上的最小值為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)幾何體的三視圖如圖所示,若該幾何體的外接球表面積為,則該幾何體的體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)共產(chǎn)黨第十九次全國(guó)代表大會(huì)于2017年10月18日至10月24日在北京召開,會(huì)議提出“決勝全面建成小康社會(huì)”.某市積極響應(yīng)開展“脫貧攻堅(jiān)”,為2020年“全面建成小康社會(huì)”貢獻(xiàn)力量.為了解該市農(nóng)村“脫貧攻堅(jiān)”情況,從某縣調(diào)查得到農(nóng)村居民2013年至2017年家庭人均純收入(單位:百元)的數(shù)據(jù)如表:
年 份 | 2013 | 2014 | 2015 | 2016 | 2017 |
年人均純收入百元 | 47 | 55 | 61 | 65 | 72 |
注:小康的標(biāo)準(zhǔn)是農(nóng)村居民家庭年人均純收入達(dá)到8000元.
(1)求關(guān)于的線性回歸方程;
(2)利用(1)中的回歸方程,預(yù)測(cè)2020年該縣農(nóng)村居民家庭年人均純收入指標(biāo)能否達(dá)到“全面建成小康社會(huì)”的標(biāo)準(zhǔn)?
附:回歸直線 斜率和截距的最小二乘估計(jì)公式分別為:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市在進(jìn)行創(chuàng)建文明城市的活動(dòng)中,為了解居民對(duì)“創(chuàng)文”的滿意程度,組織居民給活動(dòng)打分(分?jǐn)?shù)為整數(shù).滿分為100分).從中隨機(jī)抽取一個(gè)容量為120的樣本.發(fā)現(xiàn)所有數(shù)據(jù)均在內(nèi).現(xiàn)將這些分?jǐn)?shù)分成以下6組并畫出了樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形,回答下列問題:
(1)算出第三組的頻數(shù).并補(bǔ)全頻率分布直方圖;
(2)請(qǐng)根據(jù)頻率分布直方圖,估計(jì)樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點(diǎn)值為代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.
(1)求該拋物線的方程;
(2)已知拋物線上一點(diǎn),過點(diǎn)作拋物線的兩條弦和,且,判斷直線是否過定點(diǎn)?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)回答“用數(shù)學(xué)歸納法的證明(n∈N*)”的過程如下:
證明:①當(dāng)n=1時(shí),顯然命題是正確的.②假設(shè)當(dāng)n=k(k≥1,k∈N*)時(shí),有,那么當(dāng)n=k+1時(shí),,所以當(dāng)n=k+1時(shí)命題是正確的,由①②可知對(duì)于n∈N*,命題都是正確的,以上證法是錯(cuò)誤的,錯(cuò)誤在于( )
A.從k到k+1的推理過程沒有使用歸納假設(shè)
B.假設(shè)的寫法不正確
C.從k到k+1的推理不嚴(yán)密
D.當(dāng)n=1時(shí),驗(yàn)證過程不具體
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將m位性別相同的客人,按如下方法安排入住這n個(gè)房間:首先,安排1位客人和余下的客人的入住房間;然后,從余下的客人中安排2位客人和再次余下的客人的入住房間;依此類推,第幾號(hào)房就安排幾位客人和余下的客人的入住.這樣,最后一間房間正好安排最后余下的n位客人.試求客人的數(shù)和客房的房間數(shù),以及每間客房入住客人的數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com