已知Sn為數(shù)列{an}的前n項(xiàng)之和,a2=1,對(duì)任意的正整數(shù)n,都有Sn-2=p(an-2),其中p為常數(shù),且p≠1.
(1)求p的值;(2)求Sn.
分析:(1)因?yàn)閷?duì)任意的正整數(shù)n,都有Sn-2=p(an-2),所以可先把n=1的值代入,就可求出a1,再根據(jù)a1的 值求p.
(2)由(1)中所求p的值,可化簡Sn,得到含Sn和a1的式子,再根據(jù)n≥2時(shí),Sn-Sn-1=an,就可求出Sn.
解答:解:(1)因?yàn)閷?duì)任意的正整數(shù)n,都有S
n-2=p(a
n-2),
所以,當(dāng)n=1時(shí),S
1=a
1,∴a
1-2=p(a
1-2),
(a
1-2)(p-1)=0 且p≠1.∴a
1=2
由S
2-2=a
2-2,即a
1+a
2-2=p(a
2-2),a
2=1
即p=-1
(Ⅱ)S
n-2=-(a
n-2)=2-a
nS
n-1-2=2-a
n-1兩式相減得 S
n-S
n-1=a
n=-a
n+a
n-1∴a
n=
a
n-1,∴a
n=2×(
)
n-1=
∴S
n=4-a
n=4-
.
點(diǎn)評(píng):本題考查了數(shù)列中前n項(xiàng)和與通項(xiàng)之間的關(guān)系,做題時(shí)應(yīng)認(rèn)真分析,正確解答.