11.已知(2x+1)(x-2)6=a0+a1x+a2x2+…+a7x7
(Ⅰ)求a0+a1+a2…+a7的值
(Ⅱ)求a5的值.

分析 (Ⅰ)在所給的等式中,令x=1,可得a0+a1+a2…+a7 的值.
(Ⅱ)先求得(x-2)6的通項(xiàng)公式,可得a5的值.

解答 解:(Ⅰ)∵(2x+1)(x-2)6=a0+a1x+a2x2+…+a7x7 ,令x=1,可得 a0+a1+a2…+a7 =3.
(Ⅱ)∵(x-2)6的通項(xiàng)公式為Tr+1=${C}_{6}^{r}$•(-2)r•x6-r,
故a5 =2•${C}_{6}^{2}$•(-2)2+(-2)•${C}_{6}^{1}$=120+(-12)=108.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,注意根據(jù)題意,分析所給代數(shù)式的特點(diǎn),通過(guò)給二項(xiàng)式的x賦值,求展開式的系數(shù)和,可以簡(jiǎn)便的求出答案,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知平面直角坐標(biāo)系內(nèi)一點(diǎn)A(3,2).
(1)求經(jīng)過(guò)點(diǎn)A(3,2),且與直線x+y-2=0平行的直線的方程;
(2)求經(jīng)過(guò)點(diǎn)A(3,2),且與直線2x+y-1=0垂直的直線的方程;
(3)求點(diǎn)A(3,2)到直線3x+4y-7=0的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.一同學(xué)在投擲場(chǎng)以50m/s向上斜拋一枚手榴彈(練習(xí)用),拋擲方向與水平方向成60°角,問(wèn)手榴彈能擲多遠(yuǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.定義某種運(yùn)算S=a?b,運(yùn)算原理如圖所示,則式子$[{({2tan\frac{5π}{4}})?lne}]-[{lg100?{{({\frac{1}{3}})}^{-1}}}]$的值是( 。
A.-8B.-4C.-3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.?x1∈(1,2),?x2∈(1,2)使得lnx1=x1+$\frac{1}{3}m{x_2}^3-m{x_2}$,則正實(shí)數(shù)m的取值范圍是(  )
A.$({3-\frac{3}{2}ln2,+∞})$B.$[{3-\frac{3}{2}ln2,+∞})$C.[3-3ln2,+∞)D.(3-3ln2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.醫(yī)學(xué)上所說(shuō)的“三高”通常是指血脂增高、血壓增高、血糖增高等疾。疄榱私狻叭摺奔膊∈欠衽c性別有關(guān),醫(yī)院隨機(jī)對(duì)入院的60人進(jìn)行了問(wèn)卷調(diào)查,得到了如下的列聯(lián)表:
(1)請(qǐng)將列聯(lián)表補(bǔ)充完整;
  患三高疾病 不患三高疾病 合計(jì)
 男 
24
 6 30
 女 
12
 
18
 
30
 合計(jì) 36 
24
 
60
②能否在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為患“三高”疾病與性別有關(guān)?
下列的臨界值表供參考:
 P(K2≥k) 0.150.10  0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和為Sn,且an+1=2an+1,n∈N*
(1)證明數(shù)列{an+1}是等比數(shù)列并求數(shù)列{an}的通項(xiàng)公式;
(2)證明:$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}<2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知圓x2+y2=9內(nèi)有一點(diǎn)P(-1,2),AB為過(guò)點(diǎn)P的弦且傾斜角為θ.
(1)若θ=135°,求弦AB的長(zhǎng);
(2)當(dāng)弦AB被點(diǎn)P平分時(shí),求出直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知x=3是函數(shù)y=alnx+x2-10x的一個(gè)極值點(diǎn),則實(shí)數(shù)a=12.

查看答案和解析>>

同步練習(xí)冊(cè)答案