求值:sin
13
3
π=
 
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:利用誘導(dǎo)公式化簡sin
13
3
π=sin
π
3
,即可求得答案.
解答: 解:sin
13
3
π=sin(4π+
π
3
)=sin
π
3
=
3
2

故答案為:
3
2
點(diǎn)評:本題考查運(yùn)用誘導(dǎo)公式化簡求值,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一個(gè)焦點(diǎn)F作漸近線的垂線,垂直為M,延長FM交y軸于E.若
FE
FM
(1<λ<2),則該雙曲線的離心率的取值范圍為( 。
A、(1,2)
B、(2,+∞)
C、(1,
2
D、(
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2asinxcosx+
3
cos2x-
3
sin2x,且f(
π
3
)=0.
(1)求a的值及f(x)的最小正周期;
(2)當(dāng)x∈[-
π
3
,
π
6
]時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,兩個(gè)函數(shù)f(x)=eax,g(x)=blnx的圖象關(guān)于直線y=x對稱.
(1)求實(shí)數(shù)a,b滿足的關(guān)系式;
(2)當(dāng)a=1時(shí),在(
1
2
,+∞)上解不等式f(1-x)+g(x)<x2
(3)試指出函數(shù)h(x)=f(x)-g(x)在(0,
1
e
]的零點(diǎn)個(gè)數(shù),并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=Asin(ωx+Φ)+k(A>0,ω>0,|Φ|<
π
2
)的圖象如圖所示,則y的表達(dá)式是( 。
A、y=
3
2
sin(2x+
π
3
)+1
B、y=
3
2
sin(2x-
π
3
)+1
C、y=
3
2
sin(2x+
π
3
)-1
D、y=sin(2x+
π
3
)+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2-x,數(shù)列{an}滿足f(log2an)=-2n.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:數(shù)列{an}是遞減數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)在[-4,+∞)上為增函數(shù),且y=f(x-4)是偶函數(shù),則f(-6),f(-4),f(0)的大小關(guān)系為
 
(從小到大用“<”連接)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(1-2a)xx≤1
logax+
1
3
,
x>1
,當(dāng)x1≠x2時(shí),
f(x1)-f(x2)
x1-x2
<0,則a的取值范圍是( 。
A、(0,
1
3
]
B、[
1
3
1
2
]
C、(0,
1
2
]
D、[
1
4
1
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用反證法證明命題“三角形的內(nèi)角中至少有一個(gè)不大于60°”時(shí),反設(shè)正確的是( 。
A、假設(shè)三內(nèi)角至多有兩個(gè)大于60°
B、假設(shè)三內(nèi)角都不大于60°
C、假設(shè)三內(nèi)角至多有一個(gè)大于60°
D、假設(shè)三內(nèi)角都大于60°

查看答案和解析>>

同步練習(xí)冊答案