已知函數(shù)f(x)=2x-2-x,數(shù)列{an}滿足f(log2an)=-2n.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:數(shù)列{an}是遞減數(shù)列.
考點(diǎn):數(shù)列的函數(shù)特性,數(shù)列的概念及簡(jiǎn)單表示法
專題:等差數(shù)列與等比數(shù)列
分析:(1)由于函數(shù)f(x)=2x-2-x,數(shù)列{an}滿足f(log2an)=-2n.代入利用對(duì)數(shù)的運(yùn)算性質(zhì)可得an-
1
an
=-2n,又an>0,解出即可.
(2)由(1)可得an=
1
n2+1
+n
,即可證明其單調(diào)性.
解答: (1)解:∵函數(shù)f(x)=2x-2-x,數(shù)列{an}滿足f(log2an)=-2n.
2log2an-2-log2an=-2n,
an-
1
an
=-2n,又an>0,
解得an=
n2+1
-n

(2)證明:∵an=
1
n2+1
+n
,
n2+1
+n
隨著n的增大而增大且大于0,
∴數(shù)列{an}是遞減數(shù)列.
點(diǎn)評(píng):本題考查了數(shù)列的通項(xiàng)公式的求法、指數(shù)與對(duì)數(shù)的運(yùn)算性質(zhì)、分子有理化,考查了計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線x2-y2=a2上任一點(diǎn)P(x,y)到中心的距離為d,它到兩焦點(diǎn)的距離分別為d1,d2,試證明d,d1,d2之間滿足關(guān)系d2=d1d2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=2cosx(sinx-cosx).
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

銳角三角形ABC中,邊a,b是方程x2-2
3
x+2=0的兩根,角A,B滿足2sin(A+B)-
3
=0,求:
(1)角C的度數(shù);
(2)邊c的長(zhǎng)度及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求值:sin
13
3
π=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=5x-3sinx,x∈(-2,2),如果f(1-a)+f(1-a2)<0成立,則實(shí)數(shù)a的取值范圍為( 。
A、(1,
3
B、(1,3)
C、(-∞,-2)∪(1,+∞)
D、(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由不等式組 
x≤0
y≥0
y-x-2≤0
確定的平面區(qū)域記為Ω1,不等式組 
x+y≤1
x+y≥-2
確定的平面區(qū)域記為Ω2,則Ω1與Ω2公共部分的面積為(  )
A、
15
4
B、
3
2
C、
3
4
D、
7
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ax3-bsinx-2,a,b∈R,若f(-5)=17,則g(5)的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6為同學(xué)站成一排,甲、乙兩名同學(xué)必須相鄰的排法共有
 
種(用數(shù)字回答)

查看答案和解析>>

同步練習(xí)冊(cè)答案