【題目】已知m,n∈R+,f(x)=|x+m|+|2x-n|.
(1)當m=n=1時,求f(x)的最小值;
(2)若f(x)的最小值為2,求證.
【答案】(1) . (2)見解析.
【解析】試題分析:(1)代入m=n=1,卻掉絕對值,得到分段函數(shù),判定分段函數(shù)的單調(diào)性,確定函數(shù)的最小值;
(2)由題意得,函數(shù)的最小值為2,得 ,利用基本不等式求解最值,即可證明.
試題解析:
(1)∵f(x)=
∴f(x)在(-∞,)是減函數(shù),在(,+∞)是增函數(shù),∴當x=時,f(x)取最小值.
(2)∵f(x)=,
∴f(x)在(-∞,)是減函數(shù),在(,+∞)是增函數(shù),
∴當x=時,f(x)取最小值f()=m+.
∵m,n∈R,∴+= (+)(m+)
= (2++)≥2
點晴:本題主要考查了絕含有絕對值的函數(shù)的最小值問題及分段函數(shù)的圖象與性質(zhì)、基本不等式的應用,屬于中檔試題,著重考查了分類討論思想與轉(zhuǎn)化與化歸思想的應用,本題的解答中,根據(jù)絕對值的概念合理去掉絕對值號,轉(zhuǎn)化為分段函數(shù),利用分段函數(shù)的圖象與性質(zhì),確定函數(shù)的最小值,構(gòu)造基本不等式的條件,利用基本不等式是解答問題的關鍵.
科目:高中數(shù)學 來源: 題型:
【題目】已知以點A(-1,2)為圓心的圓與直線l1:x+2y+7=0相切.過點B(-2,0)的動直線l與圓A相交于M,N兩點,Q是MN的中點.
(1)求圓A的方程;
(2)當|MN|=2時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校初三年級有名學生,隨機抽查了名學生,測試分鐘仰臥起坐的成績(次數(shù)),將數(shù)據(jù)整理后繪制成如圖所示的頻率分布直方圖.用樣本估計總體,下列結(jié)論正確的是( )
A. 該校初三年級學生分鐘仰臥起坐的次數(shù)的中位數(shù)為次
B. 該校初三年級學生分鐘仰臥起坐的次數(shù)的眾數(shù)為次
C. 該校初三年級學生分鐘仰臥起坐的次數(shù)超過次的人數(shù)約有人
D. 該校初三年級學生分鐘仰臥起坐的次數(shù)少于次的人數(shù)約為人.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了準確把握市場,做好產(chǎn)品計劃,特對某產(chǎn)品做了市場調(diào)查:先銷售該產(chǎn)品50天,統(tǒng)計發(fā)現(xiàn)每天的銷售量分布在內(nèi),且銷售量的分布頻率
.
(Ⅰ)求的值并估計銷售量的平均數(shù);
(Ⅱ)若銷售量大于等于70,則稱該日暢銷,其余為滯銷.在暢銷日中用分層抽樣的方法隨機抽取8天,再從這8天中隨機抽取3天進行統(tǒng)計,設這3天來自個組,求隨機變量的分布列及數(shù)學期望(將頻率視為概率).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), ,其中為自然對數(shù)的底數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性.
(Ⅱ)試判斷曲線與是否存在公共點并且在公共點處有公切線.若存在,求出公切線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知不等式|y+4|-|y|≤2x+對任意實數(shù)x,y都成立,則常數(shù)a的最小值為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:x2+(y-a)2=4,點A(1,0).
(1)當過點A的圓C的切線存在時,求實數(shù)a的取值范圍;
(2)設AM、AN為圓C的兩條切線,M、N為切點,當MN=時,求MN所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設O為坐標原點,動點M在橢圓C上,過M作x軸的垂線,垂足為N,點P滿足.
(1)求點P的軌跡方程;
(2)設點在直線上,且.證明:過點P且垂直于OQ的直線過C的左焦點F.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過, 兩點.
(1)求橢圓的方程及離心率;
(2)設點在橢圓上.試問直線上是否存在點,使得四邊形是平行四邊形?若存在,求出點的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com