已知f(x)=sin2wx+
3
2
sin2wx-
1
2
(x∈R,w>0),若f(x)的最小正周期為2π.
(1)求f(x)的表達式和f(x)的單調(diào)遞增區(qū)間;
(2)求f(x)在區(qū)間[-
π
6
6
]上的最大值和最小值.
分析:(1)利用二倍角的余弦公式,兩角差的正弦,以及三角函數(shù)的周期化簡f(x)的表達式,根據(jù)正弦函數(shù)的單調(diào)性,求f(x)的單調(diào)遞增區(qū)間;
(2)x∈[-
π
6
,
6
],推出x-
π
6
的范圍,求sin(x-
π
6
)的范圍,然后求f(x)在區(qū)間[-
π
6
,
6
]上的最大值和最小值.
解答:解:(1)由已知f(x)=sin2wx+
3
2
sin2wx-
1
2

=
1
2
(1-cos2wx)+
3
2
sin2wx-
1
2

=
3
2
sin2wx-
1
2
cos2wx
=sin(2wx-
π
6
).
又由f(x)的周期為2π,則2π=
2w
?2w=1?w=
1
2
,
?f(x)=sin(x-
π
6
),
2kπ-
π
2
≤x-
π
6
≤2kπ+
π
2
(k∈Z)?2kπ-
π
3
≤x≤2kπ+
3
(k∈Z),
即f(x)的單調(diào)遞增區(qū)間為
[2kπ-
π
3
,2kπ+
3
](k∈Z).
(2)由x∈[-
π
6
,
6
]?-
π
6
≤x≤
6

?-
π
6
-
π
6
≤x-
π
6
6
-
π
6
?-
π
3
≤x-
π
6
3

?sin(-
π
3
)≤sin(x-
π
6
)≤sin
π
2
.∴-
3
2
≤sin(x-
π
6
)≤1.
故f(x)在區(qū)間[-
π
6
6
]的最大值和最小值分別為1和-
3
2
點評:本題考查三角函數(shù)的周期性及其求法,正弦函數(shù)的單調(diào)性,三角函數(shù)的最值,考查計算能力,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
),則f(x)的圖象(  )
A、與g(x)的圖象相同
B、與g(x)的圖象關(guān)于y軸對稱
C、向左平移
π
2
個單位,得到g(x)的圖象
D、向右平移
π
2
個單位,得到g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
sinπx   (x<0)
f(x-1)-1 (x>0)
,則f(-
11
6
)+f(
11
6
)=
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin(ωx+
π
3
)(ω>0)的圖象與y=-1的圖象的相鄰兩交點間的距離為π,要得到y(tǒng)=f(x)的圖象,只需把y=cos2x的圖象( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
),則f(x)的圖象( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sinπx.
(1)設(shè)g(x)=
f(x),(x≥0)
g(x+1)+1,(x<0)
,求g(
1
4
)
g(-
1
3
)

(2)設(shè)h(x)=f2(x)+
3
f(x)cosπx+1
,求h(x)的最大值及此時x值的集合.

查看答案和解析>>

同步練習(xí)冊答案