【題目】如圖,在四棱錐中,底面是梯形, , , , ,側(cè)面底面.
(1)求證:平面平面;
(2)若,且三棱錐的體積為,求側(cè)面的面積.
【答案】(1)見(jiàn)解析;(2) 的面積為
【解析】試題分析:
(1)根據(jù)題意證得,再由面面垂直的性質(zhì)可得平面,從而可得平面平面。(2)過(guò)點(diǎn)作交的延長(zhǎng)線(xiàn)于點(diǎn),則得底面, 令,則,可得,由三棱錐體積為,可得到,計(jì)算可得中, ,故可得。
試題解析:
(1)因?yàn)?/span>,
所以, 是等腰直角三角形,
故,
因?yàn)?/span>, ,
所以∽,
所以,即,
因?yàn)閭?cè)面底面,交線(xiàn)為,
所以平面,
又,
所以平面平面.
(2)如圖,過(guò)點(diǎn)作交的延長(zhǎng)線(xiàn)于點(diǎn),
因?yàn)閭?cè)面底面,側(cè)面 底面,
所以底面,
設(shè),則,
因?yàn)?/span>,所以,
因?yàn)槿忮F的體積為,
即,
解得,
所以,
所以.
又,
所以側(cè)面的面積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓E: 的左焦點(diǎn)為F1 , 右焦點(diǎn)為F2 , 離心率e= .過(guò)F1的直線(xiàn)交橢圓于A、B兩點(diǎn),且△ABF2的周長(zhǎng)為8.
(Ⅰ)求橢圓E的方程.
(Ⅱ)設(shè)動(dòng)直線(xiàn)l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線(xiàn)x=4相交于點(diǎn)Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過(guò)點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c分別是△ABC的角A,B,C所對(duì)的邊,且c=2,C= .
(1)若△ABC的面積等于 ,求a,b;
(2)若sinC+sin(B﹣A)=2sin2A,求A的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , a1=1,且(n+1)an=2Sn(n∈N*),數(shù)列{bn}滿(mǎn)足 , ,對(duì)任意n∈N* , 都有 .
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)令Tn=a1b1+a2b2+…+anbn . 若對(duì)任意的n∈N* , 不等式λnTn+2bnSn<2(λn+3bn)恒成立,試求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),若方程有兩個(gè)相異實(shí)根,且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某小區(qū)隨機(jī)抽取40個(gè)家庭,收集了這40個(gè)家庭去年的月均用水量(單位:噸)的數(shù)據(jù),整理得到頻數(shù)分布表和頻率分布直方圖.
分組 | 頻數(shù) |
[2,4) | 2 |
[4,6) | 10 |
[6,8) | 16 |
[8,10) | 8 |
[10,12] | 4 |
合計(jì) | 40 |
(1)求頻率分布直方圖中a,b的值;
(2)從該小區(qū)隨機(jī)選取一個(gè)家庭,試估計(jì)這個(gè)家庭去年的月均用水量不低于6噸的概率;
(3)在這40個(gè)家庭中,用分層抽樣的方法從月均用水量不低于6噸的家庭里抽取一個(gè)容量為7的樣本,將該樣本看成一個(gè)總體,從中任意選取2個(gè)家庭,求其中恰有一個(gè)家庭的月均用水量不低于8噸的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)= , .
(1)若函數(shù)在處取得極值,求的值,并判斷在處取得極大值還是極小值.
(2)若在上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,矩形ABCD的一邊AB在x軸上,另一邊CD在x軸上方,且AB=8,BC=6,其中A(﹣4,0)、B(4,0).
(1)若A、B為橢圓的焦點(diǎn),且橢圓經(jīng)過(guò)C、D兩點(diǎn),求該橢圓的方程;
(2)若A、B為雙曲線(xiàn)的焦點(diǎn),且雙曲線(xiàn)經(jīng)過(guò)C、D兩點(diǎn),求雙曲線(xiàn)的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com