2.設(shè)集合A={x|-3≤1-2x<3},集合B={x|y=$\frac{1}{{\sqrt{{{10}^x}-10}}}$},則A∩B=(1,2].

分析 求出A中x的范圍確定出A,求出B中y的范圍確定出B,找出兩集合的交集即可.

解答 解:集合A={x|-3≤1-2x<3}=(-1,2],
由B中10x-10>0,解得x>1,即B=(1,+∞),
則A∩B=(1,2],
故答案為:(1,2]

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=1+$\frac{|x|-x}{2}$(-2<x≤2).
(1)用分段函數(shù)的形式表示函數(shù);
(2)畫(huà)出該函數(shù)的圖象;
(3)寫(xiě)出該函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.圓臺(tái)上、下底半徑為2和3,則中截面所成圓的面積為$\frac{25π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)的定義域?yàn)閇-2,2],若對(duì)于任意的x,y∈[-2,2],都有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),有f(x)>0
(1)證明:f(x)為奇函數(shù);
(2)若f(1)=3求f(x)在[-2,2]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合A={(x,y)|y=2x-3},B={(x,y)|y=m},若A∩B=∅,則實(shí)數(shù)m的取值范圍是( 。
A.m<3B.m≤3C.m≤-3D.m<-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在所有首位不為0的6位儲(chǔ)蓄卡的密碼中,任取一個(gè)密碼,則頭兩位密碼都是6的概率為$\frac{1}{90}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知集合A={y|y=log${\;}_{\frac{1}{2}}$x,x>1},B={y|y=2x,x<1},則A∩B=( 。
A.{y|0$<y<\frac{1}{2}$}B.C.{y|$\frac{1}{2}$<y<1}D.{y|0<y<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.等差數(shù)列{an}的公差為d,關(guān)于x的不等式$\fraczsob1ov{2}$x2+(a1-$\fracmpxuhog{2}$)x+c≥0的解集是[0,12],則使得數(shù)列{an}的前n項(xiàng)和大于零的最大的正整數(shù)n的值是( 。
A.6B.11或12C.12D.12或13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知橢圓C:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的左右焦點(diǎn)分別為F1,F(xiàn)2,則在橢圓C上滿(mǎn)足∠F1PF2=$\frac{π}{2}$的點(diǎn)P的個(gè)數(shù)有( 。
A.0個(gè)B.1個(gè)C.2 個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案