A. | 0個 | B. | 1個 | C. | 2 個 | D. | 4個 |
分析 由橢圓的標準方程,求得焦點坐標,則P坐標為(m,n),求得$\overrightarrow{P{F}_{1}}$=(-2$\sqrt{3}$-m,-n),$\overrightarrow{P{F}_{2}}$=(2$\sqrt{3}$-m,-n),由題意可知$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,根據向量數量積的坐標表示,求得n2=12-m2,將P代入橢圓方程,求得m2+4n2=16,即可求得m和n的值,即可求得P點的個數.
解答 解:設橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1上的點P坐標為P(m,n)
由a=4,b=2,c=2$\sqrt{3}$,
可得焦點分別為F1(-2$\sqrt{3}$,0),F2(-2$\sqrt{3}$,0)
由此可得$\overrightarrow{P{F}_{1}}$=(-2$\sqrt{3}$-m,-n),$\overrightarrow{P{F}_{2}}$=(2$\sqrt{3}$-m,-n),
由∠F1PF2=$\frac{π}{2}$,即$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,
得(-2$\sqrt{3}$-m)(2$\sqrt{3}$-m)+n2=0,n2=12-m2,
又∵點P(m,n)在橢圓C上,即$\frac{{m}^{2}}{16}+\frac{{n}^{2}}{4}=1$
化簡得:m2+4n2=16,代入求得n2=$\frac{4}{3}$,m2=$\frac{32}{3}$,
∴n=±$\frac{2\sqrt{3}}{3}$,m=±$\frac{4\sqrt{6}}{3}$,
故這樣的點由4個,
故選D.
點評 本題考查橢圓的標準方程,考查向量數量積的坐標運算,考查計算能力,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,5] | B. | [10,+∞) | C. | (-∞,5]∪[10,+∞) | D. | ∅ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | 1 | C. | $\frac{\sqrt{5}}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (1,3) | B. | (0,3) | C. | (0,2) | D. | (0,1) |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com