函數(shù)f(x)=x2-bx+c滿足f(1+x)=f(1-x)且f(0)=3,則二次函數(shù)的解析式為f(x)=
 
考點(diǎn):函數(shù)解析式的求解及常用方法
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由f(1+x)=f(1-x)可得對(duì)稱軸,再由f(0)=3代求參數(shù)即可.
解答: 解:∵f(1+x)=f(1-x),
b
2
=1,
f(0)=c=3;
則b=2,c=3;
故f(x)=x2-2x+3;
故答案為:x2-2x+3.
點(diǎn)評(píng):本題考查了二次函數(shù)的性質(zhì)應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x1+x13=3,x2+
3x2
=3,求x1+x2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ln(x2+1),g(x)=(
1
3
)x-m
,若?x1∈[0,3],?x2∈[1,2]使得f(x1)≥g(x2)則實(shí)數(shù)m的取值范圍是( 。
A、[
1
9
,+∞)
B、(-∞,
1
9
]
C、[
1
3
,+∞)
D、(-∞,-
1
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(3-x)+x+2
(1)設(shè)函數(shù)g(x)=f(x)+mx(m∈R),若g(x)在區(qū)間(-∞,2]上是增函數(shù),求實(shí)數(shù)m的取值范圍;
(2)設(shè)h(x)=f(-x),將函數(shù)h(x)的圖象向右平移3個(gè)單位,再向下平移5個(gè)單位得到ω(x)的圖象.
①試確定函數(shù)ω(x)的單調(diào)區(qū)間;
②證明:ln(n!)2<n(n+1)(其中n∈Z,n≥1,n!=1×2×3×…×n)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(1+x)-
ax
x+1
(a>0).(注:[ln(1+x)]′=
1
1+x

(1)若x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),求a的值;
(2)若f(x)≥0在[0,+∞)上恒成立,求a的取值范圍;
(3)證明:(
2014
2015
2015
1
e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3+
a
2
x2+(a+b)x+c(a,b,c∈R)的兩個(gè)極值點(diǎn)分別為x1,x2,且x1∈(0,1),x2∈(1,+∞),z=2a-b,則z的取值范圍是( 。
A、(-∞,3]
B、(-∞,-3)
C、[-3,+∞)
D、(-3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在正方體ABCD-A′B′C′D′中,E是棱BB′中點(diǎn),G是DD′中點(diǎn),F(xiàn)是BC上一點(diǎn)且FB=
1
4
BC,則GB與EF所成的角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我們把可表示為兩個(gè)連續(xù)正偶數(shù)的平方差的正整數(shù)稱為“理想數(shù)”,則在1~2012(包括2012)這2012個(gè)數(shù)中,共有“理想數(shù)”的個(gè)數(shù)是( 。
A、502B、503
C、251D、252

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
AB
的方向是東南方向,且|
AB
|=4,則向量-2
AB
的方向是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案