設(shè)函數(shù)f(x)的零點(diǎn)為x1,g(x)=4x+2x-2的零點(diǎn)為x2,若|x1-x2|≤0.25,則f(x)可以是( 。
A、f(x)=(x-1)2
B、f(x)=ex-1
C、f(x)=ln(x-
1
2
)2
D、f(x)=4x-1
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:首先確定選項(xiàng)A、B、C、D中的零點(diǎn)為x1,從而利用二分法可求得x2∈(
1
4
,
1
2
),從而得到答案.
解答: 解:選項(xiàng)A:x1=1,
選項(xiàng)B:x1=0,
選項(xiàng)C:x1=
3
2
或-
1
2
,
選項(xiàng)D:x1=
1
4

∵g(1)=4+2-2>0,
g(0)=1-2<0,
g(
1
2
)=2+1-2>0,
g(
1
4
)=
2
+
1
2
-2<0,
則x2∈(
1
4
1
2
),
故選D.
點(diǎn)評(píng):本題考查了函數(shù)的零點(diǎn)的求法及二分法求函數(shù)的零點(diǎn)的近似,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)預(yù)計(jì)2015年從1月起前x個(gè)月顧客對(duì)某種商品的需求總量p(x)=
1
2
x(x+1)(41-2x)(x≤12,x∈Z+)(單位:件)
(1)寫(xiě)出第x個(gè)月的需求量f(x)的表達(dá)式;
(2)若第x個(gè)月的銷(xiāo)售量g(x)=
f(x)-21x,1≤x<7,x∈Z+
x2
ex
(
1
3
x2-10x+96),7≤x≤12,x∈Z+
(單位:件),每件利潤(rùn)q(x)=
10ex
x
(單位:元),求該商場(chǎng)銷(xiāo)售該商品,預(yù)計(jì)第幾個(gè)月的月利潤(rùn)達(dá)到最大值?月利潤(rùn)的最大值是多少?(參考數(shù)據(jù):e6≈403)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
|lgx|,0<x≤10
-
1
2
x+6,x>10
若三個(gè)正實(shí)數(shù)x1,x2,x3互不相等,且滿(mǎn)足f(x1)=f(x2)=f(x3),則x1x2x3的取值范圍是( 。
A、(20,24)
B、(10,12)
C、(5,6)
D、(1,10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

奇函數(shù)f(x)在[3,6]上是增函數(shù),在區(qū)間[3,6]上的最大值為8,最小值為-1,則2f(-6)+f(-3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面直角坐標(biāo)系中,O為原點(diǎn),A、B、C三點(diǎn)滿(mǎn)足
OC
=
2
3
OA
+
1
3
OB
,則
|
AC
|
|
CB
|
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x-a)lnx,a∈R.
(Ⅰ)若a=0,對(duì)于任意的x∈(0,1),求證:-
1
e
≤f(x)<0;
(Ⅱ)若函數(shù)f(x)在其定義域內(nèi)不是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)y=sin(2x+φ)的圖象沿x軸向左平移
π
8
個(gè)單位后,得到一個(gè)關(guān)于y軸對(duì)稱(chēng)的圖象,則φ的一個(gè)可能取值為( 。
A、
4
B、
8
C、
π
4
D、-
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果(y-2)2+|x-4y|=0,則logyx═
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.已知a+b=5,c=
7
,且4sin2
A+B
2
-cos2C=
7
2

(1)求角C的大。
(2)若a>b,求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案