4.函數(shù)$y={log_2}cos(x+\frac{π}{4})$的單調(diào)減區(qū)間為( 。
A.$[2kπ-\frac{π}{4},2kπ+\frac{π}{4})\begin{array}{l}{\;}&{(k∈Z)}\end{array}$B.$[2kπ-\frac{5π}{4},2kπ-\frac{π}{4}]\begin{array}{l}{\;}&{(k∈Z)}\end{array}$
C.$[2kπ-\frac{π}{4},2kπ+\frac{3π}{4}]\begin{array}{l}{\;}&{(k∈Z)}\end{array}$D.$(2kπ-\frac{3π}{4},2kπ-\frac{π}{4}]\begin{array}{l}{\;}&{(k∈Z)}\end{array}$

分析 由復(fù)合函數(shù)的單調(diào)性可知,內(nèi)函數(shù)滿足函數(shù)值大于0的減區(qū)間即為原函數(shù)的減區(qū)間,可得2kπ≤x+$\frac{π}{4}$<2kπ$+\frac{π}{2}$,k∈Z,求得x的范圍得答案.

解答 解:令t=$cos(x+\frac{π}{4})$,
∵外函數(shù)y=log2t為定義域內(nèi)的增函數(shù),
∴內(nèi)函數(shù)滿足函數(shù)值大于0的減區(qū)間即為原函數(shù)的減區(qū)間,
則由2kπ≤x+$\frac{π}{4}$<2kπ$+\frac{π}{2}$,k∈Z,
得$2kπ-\frac{π}{4}≤x<2kπ+\frac{π}{4}$,k∈Z.
∴函數(shù)$y={log_2}cos(x+\frac{π}{4})$的單調(diào)減區(qū)間為[$2kπ-\frac{π}{4},2kπ+\frac{π}{4}$),k∈Z.
故選:A.

點(diǎn)評(píng) 本題主要考查了復(fù)合函數(shù)的單調(diào)性以及單調(diào)區(qū)間的求法.對(duì)應(yīng)復(fù)合函數(shù)的單調(diào)性,一要注意先確定函數(shù)的定義域,二要利用復(fù)合函數(shù)與內(nèi)層函數(shù)和外層函數(shù)單調(diào)性之間的關(guān)系進(jìn)行判斷,判斷的依據(jù)是“同增異減”,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=sinx+cosx,g(x)=sinx-cosx,其中x∈(0,π).
(1)若$f(θ)=\frac{1}{5}$,求tanθ的值;
(2)若$\frac{f(θ)}{g(θ)}=\frac{1}{5}$,求tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知α∈(0,π),且cosα=-$\frac{3}{5}$,則tanα=$-\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知單位圓內(nèi)有一封閉圖形,現(xiàn)向單位圓內(nèi)隨機(jī)撒N顆黃豆,恰有n顆落在該封閉圖形內(nèi),則該封閉圖形的面積估計(jì)值為$\frac{nπ}{N}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若$sinα=\frac{1}{5}$,則cos2α=(  )
A.$\frac{23}{25}$B.$-\frac{2}{25}$C.$-\frac{23}{25}$D.$\frac{2}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(Ⅰ)解方程tan(x-$\frac{π}{6}$)=$\sqrt{3}$;
(Ⅱ)求函數(shù)$f(x)=lg(25-{x^2})+\sqrt{sinx-\frac{1}{2}}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=3,F(xiàn)是PD的中點(diǎn),E是線段AB上的點(diǎn).
(1)當(dāng)E是AB的中點(diǎn)時(shí),求證:AF∥平面PEC.
(2)當(dāng)AE:BE=2:1時(shí),求二面角E-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.觀察如圖數(shù),設(shè)1027是該數(shù)表第m行的第n個(gè)數(shù),則m+n=13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,已知${a_1}≠0,3{a_n}-{a_1}={S_1}{S_n},n∈{N^*}$.
(1)求a1,并求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列$\left\{{\frac{{n{a_n}}}{2}}\right\}$的前項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案