【題目】如圖1,在△中,,分別為,的中點(diǎn),為的中點(diǎn),,.將△沿折起到△的位置,使得平面平面,如圖2.
(Ⅰ)求證:;
(Ⅱ)求直線和平面所成角的正弦值;
(Ⅲ)線段上是否存在點(diǎn),使得直線和所成角的余弦值為?若存在,求出的值;若不存在,說明理由.
圖1 圖2
【答案】(Ⅰ)見解析.(Ⅱ).(Ⅲ).
【解析】試題分析:第一問根據(jù)等腰三角形的特征,可以得出,再結(jié)合面面垂直的性質(zhì)定理,可以得出平面,再根據(jù)線面垂直的性質(zhì),可以得出以 ,之后根據(jù)面面垂直的性質(zhì)和線面垂直的性質(zhì)得出結(jié)果;第二問根據(jù)題中的條件,建立空間直角坐標(biāo)系,利用空間向量求得結(jié)果;第三問關(guān)于是否存在類問題,都是假設(shè)其存在,結(jié)合向量所成角的余弦值求得結(jié)果.
(Ⅰ)因為在△中,,分別為,的中點(diǎn),
所以 ,.
所以,又為的中點(diǎn),
所以 .
因為平面平面,且平面,
所以 平面,
所以 .
(Ⅱ)取的中點(diǎn),連接,所以.
由(Ⅰ)得,.
如圖建立空間直角坐標(biāo)系.
由題意得,,,,.
所以,,.
設(shè)平面的法向量為,
則即
令,則,,所以.
設(shè)直線和平面所成的角為,
則.
所以 直線和平面所成角的正弦值為.
(Ⅲ)線段上存在點(diǎn)適合題意.
設(shè),其中.[10分]
設(shè),則有,
所以,從而,
所以,又,
所以.
令,
整理得.
解得,舍去.
所以 線段上存在點(diǎn)適合題意,且.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中, , 為的中點(diǎn), 為的中點(diǎn).將沿折起到,使得平面平面(如圖).
圖1 圖2
(Ⅰ)求證: ;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)在線段上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】判斷下列命題的真假:
(1)是的必要條件;
(2)是的充要條件;
(3)兩個三角形的兩組對應(yīng)角相等是這兩個三角形相似的充要條件;
(4)三角形的三條邊滿足勾股定理是這個三角形為直角三角形的充要條件;
(5)在中,重心和垂心重合是為等邊三角形的必要條件;
(6)如果點(diǎn)到點(diǎn)的距離相等,則點(diǎn)一定在線段的垂直平分線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,,
(I)求,,的值,由此猜想數(shù)列的通項公式:
(Ⅱ)用數(shù)學(xué)歸納法證明你的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上周某校高三年級學(xué)生參加了數(shù)學(xué)測試,年級組織任課教師對這次考試進(jìn)行成績分析現(xiàn)從中隨機(jī)選取了40名學(xué)生的成績作為樣本,已知這40名學(xué)生的成績?nèi)吭?/span>40分至100分之間,現(xiàn)將成績按如下方式分成6組:第一組;第二組;……;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.
(1)估計這次月考數(shù)學(xué)成績的平均分和眾數(shù);
(2)從成績大于等于80分的學(xué)生中隨機(jī)選2名,求至少有1名學(xué)生的成績在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+)(A>0,ω>0,||<)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如表:
ωx+ | 0 | π | 2π | ||
x | |||||
Asin(ωx+) | 0 | 5 | -5 | 0 |
(1)請將上表數(shù)據(jù)補(bǔ)充完整,并求出函數(shù)f(x)的解析式;
(2)將y=f(x)的圖象向左平移個單位,得到函數(shù)y=g(x)的圖象.若關(guān)于x的方程g(x)-m=0在區(qū)間[0,]上有兩個不同的解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是正方形, 平面, // , , , 為的中點(diǎn).
(1)求證: ;
(2)求證: //平面;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,如圖所示點(diǎn)為橢圓上任意三點(diǎn).
(Ⅰ)若,是否存在實數(shù),使得代數(shù)式為定值.若存在,求出實數(shù)和的值;若不存在,說明理由.
(Ⅱ)若,求三角形面積的最大值;
(Ⅲ)滿足(Ⅱ),且在三角形面積取得最大值的前提下,若線段與橢圓長軸和短軸交于點(diǎn)(不是橢圓的頂點(diǎn)).判斷四邊形的面積是否為定值.若是,求出定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在各棱長均為2的三棱柱中,側(cè)面底面ABC,.
(1)求側(cè)棱與平面所成角的正弦值的大;
(2)已知點(diǎn)D滿足,在直線上是否存在點(diǎn)P,使DP∥平面?若存在,請確定點(diǎn)P的位置,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com