以下四組向量中,互相平行的組數(shù)為( 。
a
=(2,2,1),
b
=(3,-2,2)②
a
=(8,4,-6),
b
=(4,2,-3)③
a
=(0,-1,1),
b
=(0,3,-3)④
a
=(-3,2,0),
b
=(4,-3,3)
A、1組B、2組C、3組D、4組
考點(diǎn):共線向量與共面向量
專題:空間向量及應(yīng)用
分析:利用向量共線定理即可判斷出.
解答: 解:由向量共線定理可得:若存在實(shí)數(shù)k使得
a
b
,或
b
a
,則向量
a
b

經(jīng)過判定可知:②
a
=2
b
,③
b
=-3
a
.∴②③中的向量
a
b

而①④不滿足向量共線定理.
故選:B.
點(diǎn)評:本題考查了向量共線定理,考查了計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,已知圓ρ=3cosθ與直線2ρcosθ+4ρsinθ+a=0相切,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線y=k(x+4)與曲線x=
4-y2
有交點(diǎn),則k的取值范圍是(  )
A、[-
1
2
1
2
]
B、(-∞,-
1
2
)∪(
1
2
,+∞)
C、[-
3
3
,
3
3
]
D、(-∞,-
3
3
]∪[
3
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線x=m與函數(shù)f(x)=2x2,g(x)=lnx的圖象分別交于點(diǎn)M,N,|MN|取最小值時,m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三個變量y1,y2,y3隨x的變化情況如下表:
x1.003.005.007.009.0011.00
y15135625171536456655
y2529245218919685177149
y35.006.106.616.957.207.40
三個變量y1,y2,y3中,變量
 
隨x呈對數(shù)函數(shù)型變化,變量
 
隨x呈指數(shù)函數(shù)型變化,變量
 
隨x呈冪函數(shù)變化.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A是函數(shù)f(x)=log 
1
2
(x-1)的定義域,集合B是函數(shù)g(x)=2x,x∈[-1,2]的值域,求集合A,B,A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b是實(shí)數(shù),則“l(fā)ga>lgb”是“(
1
3
a<(
1
3
b”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
x
-2(a2+1)x2(x<0,a∈R),則
1
0
f′(-1)da=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
1
3
,(x>0)
3x,(x≤0)
,則f[f(-3)]=
 

查看答案和解析>>

同步練習(xí)冊答案