(理)已知橢圓=1(a>b>0)的離心率為.
(Ⅰ)若原點(diǎn)到直線(xiàn)x+y-b=0的距離為,求橢圓的方程;
(Ⅱ)設(shè)過(guò)橢圓的右焦點(diǎn)且傾斜角為45°的直線(xiàn)l和橢圓交于A,B兩點(diǎn).
(i)當(dāng)|AB|=,求b的值;
(ii)對(duì)于橢圓上任一點(diǎn)M,若,求實(shí)數(shù)λ,μ滿(mǎn)足的關(guān)系式.
解:(Ⅰ) 解得 橢圓的方程為 4分 (Ⅱ)(i)橢圓的方程可化為: 、 易知右焦點(diǎn),據(jù)題意有AB: 、 由①,②有: 、 設(shè),
8分 (Ⅱ)(ii)顯然與可作為平面向量的一組基底, 由平面向量基本定理,對(duì)于這一平面內(nèi)的向量,有且只有一對(duì)實(shí)數(shù)λ,μ, 使得等成立. 設(shè)M(x,y),
又點(diǎn)M在橢圓上, ④ 由③有: 則 、 又A,B在橢圓上,故有 ⑥ 將⑥,⑤代入④可得: 12分 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(05年湖南卷理)(14分)
已知橢圓C:+=1(a>b>0)的左.右焦點(diǎn)為F1、F2,離心率為e. 直線(xiàn)
l:y=ex+a與x軸.y軸分別交于點(diǎn)A、B,M是直線(xiàn)l與橢圓C的一個(gè)公共點(diǎn),P是點(diǎn)F1關(guān)于直線(xiàn)l的對(duì)稱(chēng)點(diǎn),設(shè)=λ.
(Ⅰ)證明:λ=1-e2;
(Ⅱ)確定λ的值,使得△PF1F2是等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(09年湖北重點(diǎn)中學(xué)4月月考理)(13分
已知橢圓C:+=1(a>b>0)的離心率為,過(guò)右焦點(diǎn)F且斜率為1的直線(xiàn)交橢圓C于A,B兩點(diǎn),N為弦AB的
(1)求直線(xiàn)ON(O為坐標(biāo)原點(diǎn))的斜率KON ;
1) (2)對(duì)于橢圓C上任意一點(diǎn)M ,試證:總存在角(∈R)使等式:=cos+sin成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(上海卷理20)設(shè)P(a,b)(b≠0)是平面直角坐標(biāo)系xOy中的點(diǎn),l是經(jīng)過(guò)原點(diǎn)與點(diǎn)(1,b)的直線(xiàn),記Q是直線(xiàn)l與拋物線(xiàn)x2=2py(p≠0)的異于原點(diǎn)的交點(diǎn)
⑴已知a=1,b=2,p=2,求點(diǎn)Q的坐標(biāo).
⑵已知點(diǎn)P(a,b)(ab≠0)在橢圓+y2=1上,p=,求證:點(diǎn)Q落在雙曲線(xiàn)4x2-4y2=1上.
⑶已知?jiǎng)狱c(diǎn)P(a,b)滿(mǎn)足ab≠0,p=,若點(diǎn)Q始終落在一條關(guān)于x軸對(duì)稱(chēng)的拋物線(xiàn)上,試問(wèn)動(dòng)點(diǎn)P的軌跡落在哪種二次曲線(xiàn)上,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(上海卷理20)設(shè)P(a,b)(b≠0)是平面直角坐標(biāo)系xOy中的點(diǎn),l是經(jīng)過(guò)原點(diǎn)與點(diǎn)(1,b)的直線(xiàn),記Q是直線(xiàn)l與拋物線(xiàn)x2=2py(p≠0)的異于原點(diǎn)的交點(diǎn)
⑴已知a=1,b=2,p=2,求點(diǎn)Q的坐標(biāo).
⑵已知點(diǎn)P(a,b)(ab≠0)在橢圓+y2=1上,p=,求證:點(diǎn)Q落在雙曲線(xiàn)4x2-4y2=1上.
⑶已知?jiǎng)狱c(diǎn)P(a,b)滿(mǎn)足ab≠0,p=,若點(diǎn)Q始終落在一條關(guān)于x軸對(duì)稱(chēng)的拋物線(xiàn)上,試問(wèn)動(dòng)點(diǎn)P的軌跡落在哪種二次曲線(xiàn)上,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com