(1)若z=
(i-
3
)
3
(3+4i)4
(1-i)4
,求:|z|;
(2)已知z1,z2∈C,|z1|=1,求|
z1-z2
1-z1z2
|
的值.
分析:(1)直接化簡(jiǎn)|z|,即分子、分母分別求模,再化簡(jiǎn)即可.
(2)由|z1|=1則有z1
.
z
1
=1,化簡(jiǎn)|
z1-z2
1-z1z2
|
,求解即可.
解答:解:(1)|z|=
|i-
3
|
3
|3+4i|4
|1-i|4
=
2354
(
2
)
4
=2×54=1250

(2)解法1:由|z1|=1則有z1
.
z
1
=1且z1≠0,∴
.
z
1
=
1
z1

|
z1-z2
1-z1z2
|=|
z1-z2
1-
1
z1
z2
|=|
z1(z1-z2
z1-z2
|=|z1|=1
解法2:∵|z1|=1∴z1
.
z
1
=1
|
z1-z2
1-z1z2
|=|
z1-z2
z1
.
z
1
-
.
z
1
z2 
|=|
z1-z
.
z
1
(z1-z2
|=|
1
.
z
1
|=1.
點(diǎn)評(píng):熟練地運(yùn)用復(fù)數(shù)模的性質(zhì),其性質(zhì)有:|z|=|a+bi|=
a2+b2
,|z1•z2|=|z1|•|z2|,|
z1
z2
|=
|z1|
|z2|
(z2≠0),
|z|n=|zn|等,特別注意|z|2=|
.
z
|
2
=z•
.
z
還起到添去絕對(duì)值符號(hào)的作用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1、給出下列四個(gè)命題:1)若z∈C,則z2≥0; 2)2i-1虛部是2i; 3)若a>b,則a+i>b+i;4)若z1,z2∈C,且z1>z2,則z1,z2為實(shí)數(shù);其中正確命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z=m(m-1)+(m2+2m-3)i(m∈R)
(1)若z是實(shí)數(shù),求m的值;
(2)若z是純虛數(shù),求m的值;
(3)若在復(fù)平面C內(nèi),z所對(duì)應(yīng)的點(diǎn)在第四象限,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z=3-2i
(1)求|
.
z
-i|
;
(2)若復(fù)數(shù)az+a2-i在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)在第二象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)若z∈C,則z2≥0;
(2)a,b∈R且a=b是(a-b)+(a+b)i為純虛數(shù)的充要條件;
(3)當(dāng)z是非零實(shí)數(shù)時(shí),|z+
1
z
|≥2
恒成立;
(4)復(fù)數(shù)的模都是正實(shí)數(shù).
其中正確的命題有( 。﹤(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案