【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的參數(shù)方程為, 為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的普通方程與曲線的直角坐標方程,并討論兩曲線公共點的個數(shù);

(2)若,求由兩曲線交點圍成的四邊形面積的最大值.

【答案】(1)當時,兩曲線有兩個公共點;

時,兩曲線有四個公共點;

時,兩曲線無公共點.

(2)見解析.

【解析】試題分析:(1)利用消去參數(shù),求得橢圓的普通方程為,將圓的極坐標方程兩邊平方,可求得圓的直角坐標方程為.故當時,兩曲線有兩個公共點;當時,兩曲線有四個公共點;當時,兩曲線無公共點.(2)根據(jù)橢圓和圓的對稱性可知,四邊形也關(guān)系軸和原點對稱,設(shè)四邊形第一象限的點為,利用面積公式可求得最大面積為.

試題解析:

(1), .

時,兩曲線有兩個公共點;

時,兩曲線有四個公共點;

時,兩曲線無公共點.

(2)由于曲線與曲線關(guān)于軸、軸以及原點對稱,

所以四邊形也關(guān)于軸、軸以及原點對稱.

設(shè)四邊形位于第一象限的點為,

則四邊形的面積為

.

當且僅當,即時,等號成立.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】值域為(0,+∞)的函數(shù)是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下結(jié)論正確的是(
A.若a<b且c<d,則ac<bd
B.若ac2>bc2 , 則a>b
C.若a>b,c<d,則a﹣c<b﹣d
D.若0<a<b,集合A={x|x= },B={x|x= },則A?B

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某天數(shù)學課上,你突然驚醒,發(fā)現(xiàn)黑板上有如下內(nèi)容:
例:求x3﹣3x,x∈[0,+∞)的最小值.解:利用基本不等式a+b+c≥3 ,得到x3+1+1≥3x,于是x3﹣3x=x3+1+1﹣3x﹣2≥3x﹣3x﹣2=﹣2,當且僅當x=1時,取到最小值﹣2
(1)老師請你模仿例題,研究x4﹣4x,x∈[0,+∞)上的最小值;
(提示:a+b+c+d≥4
(2)研究 x3﹣3x,x∈[0,+∞)上的最小值;
(3)求出當a>0時,x3﹣ax,x∈[0,+∞)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線C:y2=2px和⊙M:(x﹣4)2+y2=1,過拋物線C上一點H(x0 , y0)(y0≥1)作兩條直線與⊙M相切于A、兩點,分別交拋物線為E、F兩點,圓心點M到拋物線準線的距離為
(Ⅰ)求拋物線C的方程;
(Ⅱ)當∠AHB的角平分線垂直x軸時,求直線EF的斜率;
(Ⅲ)若直線AB在y軸上的截距為t,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,在區(qū)間(0,1)上是增函數(shù)的是(
A.y=|x|
B.y=3﹣x
C.y=
D.y=﹣x2+4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知左焦點為F(﹣1,0)的橢圓過點E(1, ).過點P(1,1)分別作斜率為k1 , k2的橢圓的動弦AB,CD,設(shè)M,N分別為線段AB,CD的中點.
(1)求橢圓的標準方程;
(2)若P為線段AB的中點,求k1
(3)若k1+k2=1,求證直線MN恒過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017安徽馬鞍山二!已知動圓過定點,且在軸上截得的弦長為4,記動圓圓心的軌跡為曲線C

(Ⅰ)求直線與曲線C圍成的區(qū)域面積;

(Ⅱ)點在直線上,點,過點作曲線C的切線,切點分別為,證明:存在常數(shù),使得,并求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}的前n項和為Sn , 若對于任意的正整數(shù)n都有Sn=2an﹣3n.
(1)設(shè)bn=an+3,求證:數(shù)列{bn}是等比數(shù)列,并求出{an}的通項公式;
(2)求數(shù)列{nan}的前n項和.

查看答案和解析>>

同步練習冊答案