在直三棱柱ABC-A1B1C1中,AB=AC=1,∠BAC=90°,且異面直線A1B與B1C1所成的角等于60°,設(shè)AA1=a.

(1)求a的值;

(2)求平面A1BC1與平面B1BC1所成的銳二面角的大。

答案:
解析:

  解法一(1)

  就是異面直線所成的角,

  即  (2分)

  連接,又,則

  為等邊三角形  3分

  由,

    5分

  (2)取的中點(diǎn),連接,過,連接,

  平面

    7分

  又,所以平面,即,

  所以就是平面與平面所成的銳二面角的平面角  9分

  在中,,,,

    11分

  因此平面與平面所成的銳二面角的大小為  12分

  說明:取的中點(diǎn),連接,同樣給分(也給10分)

  解法二:(1)建立如圖坐標(biāo)系,于是,,()

  

  

  


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直三棱柱ABC-A1B1C1中,已知AB=AC,F(xiàn)為BB1上一點(diǎn),BF=BC=2,F(xiàn)B1=1,D為BC中點(diǎn),E為線段AD上不同于點(diǎn)A、D的任意一點(diǎn).
(Ⅰ)證明:EF⊥FC1
(Ⅱ)若AB=
2
,求DF與平面FA1C1所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,底面ABC是等腰直角三角形,斜邊AB=
2
a
,側(cè)棱AA1=2a,點(diǎn)D是AA1的中點(diǎn),那么截面DBC與底面ABC所成二面角的大小是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=AA1=1,D、E分別為棱AB、BC的中點(diǎn),M為棱AA1上的點(diǎn).
(1)證明:A1B1⊥C1D;
(2)當(dāng)AM=
3
2
時,求二面角M-DE-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90°,D、E分別為AC、AA1的中點(diǎn).點(diǎn)F為
棱AB上的點(diǎn).
(Ⅰ)當(dāng)點(diǎn)F為AB的中點(diǎn)時.
(1)求證:EF⊥AC1;
(2)求點(diǎn)B1到平面DEF的距離.
(Ⅱ)若二面角A-DF-E的大小為
π
4
,求
AF
FB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=
3
,∠ABC=
π
3

(Ⅰ)證明:AB⊥A1C;
(Ⅱ)求二面角A-A1C-B的正弦值.

查看答案和解析>>

同步練習(xí)冊答案