已知橢圓的右焦點(diǎn)F,左、右準(zhǔn)線(xiàn)分別為l1:x=-m-1,l2:x=m+1,且l1、l2分別與直線(xiàn)y=x相交于A(yíng)、B兩點(diǎn).
(1)若離心率為,求橢圓的方程;
(2)當(dāng)·<7時(shí),求橢圓離心率的取值范圍.
(1)+y2=1.(2)
(1)由已知,得c=m,=m+1,從而a2=m(m+1),b2=m.
由e=,得b=c,從而m=1.故a=,b=1,得所求橢圓方程為+y2=1.
(2)易得A(-m-1,-m-1),B(m+1,m+1),從而=(2m+1,m+1),=(1,m+1),故·=2m+1+(m+1)2=m2+4m+2<7,得0<m<1.
由此離心率e=,故所求的離心率取值范圍為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知焦點(diǎn)在軸上的橢圓經(jīng)過(guò)點(diǎn),直線(xiàn)
交橢圓于不同的兩點(diǎn).

(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)求實(shí)數(shù)的取值范圍;
(3)是否存在實(shí)數(shù),使△是以為直角的直角三角形,若存在,求出的值,若不存,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知橢圓=1(a>b>0)的離心率為,且過(guò)點(diǎn)A(0,1).
 
(1)求橢圓的方程;
(2)過(guò)點(diǎn)A作兩條互相垂直的直線(xiàn)分別交橢圓于點(diǎn)M、N,求證:直線(xiàn)MN恒過(guò)定點(diǎn)P.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓C:=1(a>b>0)的離心率為,與過(guò)右焦點(diǎn)F且斜率為k(k>0)的直線(xiàn)相交于A(yíng)、B兩點(diǎn).若=3,則k=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

雙曲線(xiàn)C與橢圓=1有相同的焦點(diǎn),直線(xiàn)y=x為C的一條漸近線(xiàn).求雙曲線(xiàn)C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知橢圓=1(a>b>0),F(xiàn)1、F2分別為橢圓的左、右焦點(diǎn),A為橢圓的上頂點(diǎn),直線(xiàn)AF2交橢圓于另一點(diǎn)B.

(1)若∠F1AB=90°,求橢圓的離心率;
(2)若=2,·,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓=1的離心率為,則k的值為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的左,右焦點(diǎn)分別為,焦距為,若直線(xiàn)與橢圓的一個(gè)交點(diǎn)滿(mǎn)足,則該橢圓的離心率為              .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓C:+=1(a>b>0)的離心率為.雙曲線(xiàn)x2-y2=1的漸近線(xiàn)與橢圓C有四個(gè)交點(diǎn),以這四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為16,則橢圓C的方程為(  )
A.+=1B.+=1
C.+=1D.+=1

查看答案和解析>>

同步練習(xí)冊(cè)答案