對實數(shù)a和b,定義運算“?”;a?b=數(shù)學(xué)公式設(shè)函數(shù)f(x)=(x2-2x)?(x-3)(x∈R),若函數(shù)y=f(x)-k的圖象與x軸恰有兩個公共點,則實數(shù)k的取值范圍是________.

-1<k≤0
分析:化簡函數(shù)f(x)的解析式,作出函數(shù)y=f(x)的圖象,由題意可得,函數(shù)y=f(x)與y=k的圖象有2個交點,結(jié)合圖象求得結(jié)果.
解答:由題意可得f(x)==,
函數(shù)y=f(x)的圖象如右圖所示:
函數(shù)y=f(x)-k的圖象與x軸恰有兩個公共點,即函數(shù)y=f(x)與y=k的圖象有2個交點.
由圖象可得-1<k≤0.
故答案為:-1<k≤0.
點評:本題主要考查根據(jù)函數(shù)的解析式作出函數(shù)的圖象,體現(xiàn)了化歸與轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對實數(shù)a和b,定義運算“?”:a?b=
a,a≤b
b,a>b
.設(shè)函數(shù)f(x)=(x2-1)?(x-x2),x∈R.若函數(shù)y=f(x)-c恰有四個不同的零點,則實數(shù)c的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對實數(shù)a和b,定義運算“?”:a?b=
a,a-b≤1
b,a-b>1
,設(shè)函數(shù)f(x)=(x2-2)?(x-x2),x∈R,若函數(shù)y=f(x)+c的圖象與x軸恰有兩個公共點,則實數(shù)c的取值范圍是
(
3
4
,1)∪[2,+∞)
(
3
4
,1)∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對實數(shù)a和b,定義運算“?”:a?b=
a,a-b≤1
b,a-b>1
,設(shè)函數(shù)f(x)=x2?(x+1),若函數(shù)y=f(x)-c恰有兩個不同的零點,則實數(shù)c的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對實數(shù)a和b,定義運算“?”:a?b=
a,a≤b
b,a>b
設(shè)函數(shù)f(x)=(x2-1)?(x-x2),x∈R.若函數(shù)y=f(x)-c恰有兩個不同的零點,則實數(shù)c的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州一模)對實數(shù)a和b,定義運算“?”;a?b=
a,a-b≤1
b,a-b>1
設(shè)函數(shù)f(x)=(x2-2x)?(x-3)(x∈R),若函數(shù)y=f(x)-k的圖象與x軸恰有兩個公共點,則實數(shù)k的取值范圍是
-1<k≤0
-1<k≤0

查看答案和解析>>

同步練習(xí)冊答案