已知α,β都是銳角,tanα=
1
7
,tanβ=
1
3
,求tan(α+β)的值.
分析:由條件利用兩角和的正切公式求得tan(α+β)的值.
解答:解:利用兩角和的正切公式可得 tan(α+β)=
tanα+tanβ
1-tanα•tanβ
=
1
7
+
1
3
1-
1
7
×
1
3
=
1
2
點(diǎn)評(píng):本題主要考查利用兩角和的正切公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文科做)已知A、B都是銳角,且A+B
π2
,(1+tanA)(1+tanB)=2,求證A+B=45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

已知a、b都是銳角,且3sin2a+2sin2b=1,3sin2a-3sin2b=0。求證:。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

已知a、b都是銳角,且3sin2a+2sin2b=1,3sin2a-3sin2b=0。求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(文科做)已知A、B都是銳角,且A+B
π
2
,(1+tanA)(1+tanB)=2,求證A+B=45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2005-2006學(xué)年廣東省廣州113中學(xué)高二(下)3月月考數(shù)學(xué)試卷(解析版) 題型:解答題

(文科做)已知A、B都是銳角,且A+B,(1+tanA)(1+tanB)=2,求證A+B=45°.

查看答案和解析>>

同步練習(xí)冊(cè)答案