定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),f(x)=-f(x+2),且x∈(-1,0)時,f(x)=2x+
1
5
,則f(log220)=______.
∵f(-x)=-f(x),
∴f(x)為奇函數(shù),
∵f(x)=-f(x+2),即f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x),
∴f(x)是周期函數(shù),周期為4,
∵log216<log220<log232,
∴4<log220<5,
∴0<log220-4<1,即0<log2
5
4
<1,即-1<log2
4
5
<0,
∴f(log220)=f(log220-4)=f(log2
5
4
)=-f(-log2
5
4
)=-f(log2
4
5
),
∵x∈(-1,0)時,f(x)=2x+
1
5
,
∴f(log2
4
5
)=2log2
4
5
+
1
5
=
4
5
+
1
5
=1,
∴f(log220)=-1.
故答案為:-1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義在R上的奇函數(shù)f(x),當(dāng)x≥0時,f(x)=
log
1
2
(x+1)
,x∈[0,1)
1-|x-3|,x∈[1,+∞)
,則方程f(x)=
1
2
的所有解之和為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知關(guān)于x的一元二次函數(shù)
(1)設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數(shù)作為,
求函數(shù)在區(qū)間[上是增函數(shù)的概率;
(2)設(shè)點(,)是區(qū)域內(nèi)的隨機點,求函數(shù)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=
1,x<0
x2+1,x≥0
,則不等式f(1-x2)=f(2x)的解集是( 。
A.{x|x≤-1}B.{-1+
2
}
C.{x|x≤-1或x=-1+
2
}
D.{x|x<-1或x=-1+
2
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了預(yù)防甲型H1N1流感,某學(xué)校對教室用某種藥物進(jìn)行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間t(小時)成正比;藥物釋放完畢后,y與t的函數(shù)關(guān)系式為y=(
1
16
)t-a
(a為常數(shù)),如圖所示,根據(jù)圖中提供的信息,回答下列問題:
(1)求從藥物釋放開始,每立方米空氣中的含藥量y(毫克)與時間t(小時)之間的函數(shù)關(guān)系式.
(2)據(jù)測定,當(dāng)空氣中每立方米的含藥量降低到0.25毫克以下時,學(xué)生方可進(jìn)教室,那么從藥物釋放開始,至少需要經(jīng)過多少小時后,學(xué)生才能回答教室.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)f(x)=
x2
2-x
x∈[0,1]
x∈(1,2]
,則
2
0
f(x)dx=( 。
A.
3
4
B.
4
5
C.
5
6
D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=
1,x為有理數(shù)
π,x為無理數(shù)
,下列結(jié)論不正確的(  )
A.此函數(shù)為偶函數(shù)
B.此函數(shù)是周期函數(shù)
C.此函數(shù)既有最大值也有最小值
D.方程f[f(x)]=1的解為x=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列五個命題中,
(1)若數(shù)列的前n項和為,則是等比數(shù)列;
(2)若,則函數(shù)的值域為R;
(3)函數(shù)與函數(shù)的圖象關(guān)于直線x=2對稱;
(4)已知向量的夾角為鈍角,則實數(shù)的取值范圍是;
(5)母線長為2,底面半徑為的圓錐,過頂點的一個截面面積的最大值為,其中正確命題的個數(shù)為
A.1 B.2 C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè),則

查看答案和解析>>

同步練習(xí)冊答案