【題目】為拋物線的焦點,過點的直線與交于、兩點,的準線與軸的交點為,動點滿足.
(1)求點的軌跡方程;
(2)當四邊形的面積最小時,求直線的方程.
【答案】(1);(2)
【解析】
(1)求出F,E的坐標,設l方程為x﹣my﹣1=0,聯(lián)立方程組消元,根據(jù)根與系數(shù)的關系求出AB中點坐標,由向量加法的幾何意義可知AB的中點也是EP的中點,利用中點坐標公式得出P的軌跡關于m的參數(shù)方程,轉化為普通方程即可;
(2)利用弦長公式和點到直線的距離公式計算|AB|,E到l的距離d,得出S關于m的函數(shù),求出S取得最小值時的m,代入x﹣my﹣1=0得出l的方程.
(1)拋物線y2=4x的焦點為F(1,0),∴E(﹣1,0).
設直線l的方程為x﹣my﹣1=0.
聯(lián)立方程組,消元得:y2﹣4my﹣4=0.
設A(x1,y1),B(x2,y2),P(x,y),則y1+y2=4m,x1+x2=m(y1+y2)+2=4m2+2.
∴AB的中點坐標為M(2m2+1,2m).
∵=+=2,∴M為EP的中點.
∴,∴,即y2=4x﹣12.
∴點P的軌跡方程為y2=4x﹣12.
(2)由(I)得y1+y2=4m,y1y2=﹣4.
∴|AB|===4(m2+1).
E到直線l:x﹣my﹣1=0的距離d=,
∴S△ABE=|AB|d=4,
∵=+,∴四邊形EAPB是平行四邊形,
∴平行四邊形EAPB的面積S=2S△ABE=8.
∴當m=0時,S取得最小值8.
此時直線l的方程為x﹣1=0.
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系中的原點O為極點,x軸正半軸為極軸的極坐標系中,已知曲線的極坐標方程為ρ=.
(1)將曲線的極坐標方程化為直角坐標方程;
(2)過極點O作直線l交曲線于點P,Q,若|OP|=3|OQ|,求直線l的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進出口,如圖所示,已知舊墻的維修費用為45元/m,新墻的造價為180元/m,設利用的舊墻的長度為x(單位:元)。
(Ⅰ)將y表示為x的函數(shù);
(Ⅱ)試確定x,使修建此矩形場地圍墻的總費用最小,并求出最小總費用。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工藝廠有銅絲5萬米,鐵絲9萬米,準備用這兩種材料編制成花籃和花盆出售,已知一只花籃需要用銅絲200米,鐵絲300米;編制一只花盆需要100米,鐵絲300米,設該廠用所有原來編制個花籃, 個花盆.
(Ⅰ)列出滿足的關系式,并畫出相應的平面區(qū)域;
(Ⅱ)若出售一個花籃可獲利300元,出售一個花盤可獲利200元,那么怎樣安排花籃與花盆的編制個數(shù),可使得所得利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,棱柱ABCD﹣A1B1C1D1中,底面ABCD是平行四邊形,側棱AA1⊥底面ABCD,AB=1,AC= ,BC=BB1=2.
(Ⅰ)求證:AC⊥平面ABB1A1;
(Ⅱ)求二面角A﹣C1D﹣C的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程選講]
在直角坐標系xOy中,圓C的方程為(x﹣1)2+y2= ,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,點M的極坐標為(2,θ),過點M斜率為1的直線交圓C于A,B兩點.
(1)求圓C的極坐標方程;
(2)求|MA||MB|的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E: =1(a>b>0)經(jīng)過點(2 ,1),且以橢圓短軸的兩個端點和一個焦點為頂點的三角形是等邊三角形.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設P(x,y)是橢圓E上的動點,M(2,0)為一定點,求|PM|的最小值及取得最小值時P點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com