【題目】(本小題滿分12分)

圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,如圖所示,已知舊墻的維修費(fèi)用為45/m,新墻的造價(jià)為180/m,設(shè)利用的舊墻的長(zhǎng)度為x(單位:元)。

)將y表示為x的函數(shù);

)試確定x,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用。

【答案】y=225x+

)當(dāng)x=24m時(shí),修建圍墻的總費(fèi)用最小,最小總費(fèi)用是10440元。

【解析】

試題(1)設(shè)矩形的另一邊長(zhǎng)為am,則根據(jù)圍建的矩形場(chǎng)地的面積為360m2,易得,此時(shí)再根據(jù)舊墻的維修費(fèi)用為45/m,新墻的造價(jià)為180/m,我們即可得到修建圍墻的總費(fèi)用y表示成x的函數(shù)的解析式;(2)根據(jù)(1)中所得函數(shù)的解析式,利用基本不等式,我們易求出修建此矩形場(chǎng)地圍墻的總費(fèi)用最小值,及相應(yīng)的x

試題解析:(1)如圖,設(shè)矩形的另一邊長(zhǎng)為a m

45x+180x-2+180·2a=225x+360a-360

由已知xa=360,a=,

所以y=225x+

2

.當(dāng)且僅當(dāng)225x=時(shí),等號(hào)成立.

即當(dāng)x=24m時(shí),修建圍墻的總費(fèi)用最小,最小總費(fèi)用是10440元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在xOy平面上,將兩個(gè)半圓。▁﹣1)2+y2=1(x≥1)和(x﹣3)2+y2=1(x≥3),兩條直線y=1和y=﹣1圍成的封閉圖形記為D,如圖中陰影部分,記D繞y軸旋轉(zhuǎn)一周而成的幾何體為Ω.過(0,y)(|y|≤1)作Ω的水平截面,所得截面積為4π +8π.試?yán)米鏁溤怼⒁粋(gè)平放的圓柱和一個(gè)長(zhǎng)方體,得出Ω的體積值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱與底面垂直,體積為 ,底面是邊長(zhǎng)為 的正三角形,若P為底面A1B1C1的中心,則PA與平面A1B1C1所成角的大小為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)的定義域?yàn)?/span>.

(1)求實(shí)數(shù),的值;

(2)判斷函數(shù)的單調(diào)性,若實(shí)數(shù)滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)邊上,,,,

(1)求的值;

(2)若的面積是,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生平均每天課外體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)

平均每天鍛煉的時(shí)間/分鐘

總?cè)藬?shù)

20

36

44

50

40

10

將學(xué)生日均課外體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.

(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表;

課外體育不達(dá)標(biāo)

課外體育達(dá)標(biāo)

合計(jì)

20

110

合計(jì)

(2)通過計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“課外體育達(dá)標(biāo)”性別有關(guān)?

參考公式,其中

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)在線段上.過點(diǎn)于點(diǎn),將沿折起到的位置(點(diǎn)重合),使得.

(Ⅰ)求證:.

(Ⅱ)試問:當(dāng)點(diǎn)在線段上移動(dòng)時(shí),二面角的平面角的余弦值是否為定值?若是,求出其定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=aexgx=lnx-lna,其中a為常數(shù),且曲線y=fx)在其與y軸的交點(diǎn)處的切線記為l1,曲線y=gx)在其與x軸的交點(diǎn)處的切線記為l2,且l1l2

1)求l1,l2之間的距離;

2)若存在x使不等式成立,求實(shí)數(shù)m的取值范圍;

3)對(duì)于函數(shù)fx)和gx)的公共定義域中的任意實(shí)數(shù)x0,稱|fx0-gx0|的值為兩函數(shù)在x0處的偏差.求證:函數(shù)fx)和gx)在其公共定義域內(nèi)的所有偏差都大于2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,若,,成等差數(shù)列,且三個(gè)內(nèi)角,也成等差數(shù)列,則的形狀為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案