已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓過點(diǎn),且它的離心率.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)與圓相切的直線交橢圓于兩點(diǎn),若橢圓上一點(diǎn)滿足,求實(shí)數(shù)的取值范圍.
(1);(2).
解析試題分析:(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為,由已知得,解出即可求得a,b;
(2)由直線l:y=kx+t與圓(x+1)2+y2=1相切,可得k,t的關(guān)系式①,把y=kx+t代入
消掉y得x的二次方程,設(shè)M(x1,y1),N(x2,y2),由
得λ=(x1+x2,y1+y2),代入韋達(dá)定理可求得C點(diǎn)坐標(biāo),把點(diǎn)C代入橢圓方程可用k,t表示出λ,再由①式消掉k得關(guān)于t的函數(shù),由t2范圍可求得λ2的范圍,進(jìn)而求得λ的范圍;.
試題解析:(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為
由已知得:解得,所以橢圓的標(biāo)準(zhǔn)方程為:
(2)因?yàn)橹本:與圓相切所以,
把代入并整理得:┈7分
設(shè),則有
因?yàn)?,所以,
又因?yàn)辄c(diǎn)在橢圓上,所以,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/81/2/1d1wy3.png" style="vertical-align:middle;" />所以
所以,所以的取值范圍為
考點(diǎn):1.直線與圓錐曲線的關(guān)系;2.橢圓的標(biāo)準(zhǔn)方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)拋物線:的焦點(diǎn)為,準(zhǔn)線為,過準(zhǔn)線上一點(diǎn)且斜率為的直線交拋物線于,兩點(diǎn),線段的中點(diǎn)為,直線交拋物線于,兩點(diǎn).
(1)求拋物線的方程及的取值范圍;
(2)是否存在值,使點(diǎn)是線段的中點(diǎn)?若存在,求出值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn),圓C:與橢圓E:有一個(gè)公共點(diǎn),分別是橢圓的左、右焦點(diǎn),直線與圓C相切.
(1)求m的值與橢圓E的方程;
(2)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知平面內(nèi)一動(dòng)點(diǎn)到兩個(gè)定點(diǎn)、的距離之和為,線段的長(zhǎng)為.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過點(diǎn)作直線與軌跡交于、兩點(diǎn),且點(diǎn)在線段的上方,
線段的垂直平分線為.
①求的面積的最大值;
②軌跡上是否存在除、外的兩點(diǎn)、關(guān)于直線對(duì)稱,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓C1:的右焦點(diǎn)為F,P為橢圓上的一個(gè)動(dòng)點(diǎn).
(1)求線段PF的中點(diǎn)M的軌跡C2的方程;
(2)過點(diǎn)F的直線l與橢圓C1相交于點(diǎn)A、D,與曲線C2順次相交于點(diǎn)B、C,當(dāng)時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓相交于、兩點(diǎn),且,試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)在雙曲線上,且雙曲線的一條漸近線的方程是.
(1)求雙曲線的方程;
(2)若過點(diǎn)且斜率為的直線與雙曲線有兩個(gè)不同交點(diǎn),求實(shí)數(shù)的取值范圍;
(3)設(shè)(2)中直線與雙曲線交于兩個(gè)不同點(diǎn),若以線段為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知A、B、C是長(zhǎng)軸長(zhǎng)為4的橢圓E上的三點(diǎn),點(diǎn)A是長(zhǎng)軸的一個(gè)端點(diǎn),BC過橢圓中心O,且,|BC|=2|AC|.
(1)求橢圓E的方程;
(2)在橢圓E上是否存點(diǎn)Q,使得?若存在,有幾個(gè)(不必求出Q點(diǎn)的坐標(biāo)),若不存在,請(qǐng)說明理由.
(3)過橢圓E上異于其頂點(diǎn)的任一點(diǎn)P,作的兩條切線,切點(diǎn)分別為M、N,若直線MN在x軸、y軸上的截距分別為m、n,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)點(diǎn)在圓上,且在第一象限,過作圓的切線交橢圓于,兩點(diǎn),問:△的周長(zhǎng)是否為定值?如果是,求出定值;如果不是,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com