設(shè)橢圓C1的右焦點(diǎn)為F,P為橢圓上的一個(gè)動(dòng)點(diǎn).
(1)求線段PF的中點(diǎn)M的軌跡C2的方程;
(2)過(guò)點(diǎn)F的直線l與橢圓C1相交于點(diǎn)A、D,與曲線C2順次相交于點(diǎn)B、C,當(dāng)時(shí),求直線l的方程.

(1);(2)

解析試題分析:(1)設(shè)點(diǎn),而,根據(jù)中點(diǎn),可得將其代入橢圓方程整理可得點(diǎn)的軌跡方程。(2)為了省去對(duì)直線斜率的討論,可設(shè)直線方程為,分別與兩曲線方程聯(lián)立消去得關(guān)于的一元二次方程,有求根公式可得方程的根,即各點(diǎn)的縱坐標(biāo)。由已知,可得,即。從而可得的值。
試題解析:(1)設(shè)點(diǎn),而,故點(diǎn)的坐標(biāo)為,代入橢圓方程得:,即線段PF的中點(diǎn)M的軌跡C2的方程為:
(2)設(shè)直線l的方程為:,解方程組,,?當(dāng)時(shí),則,解方程組
,,由題設(shè),可得,有,所以=,即),由此解得:,故符合題設(shè)條件的其中一條直線的斜率;?當(dāng)時(shí),同理可求得另一條直線方程的斜率,故所求直線l的方程是.
考點(diǎn):1代入法求軌跡問(wèn)題;2直線和圓錐曲線的位置關(guān)系問(wèn)題;3直線方程。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知圓E ,點(diǎn),P是圓E上任意一點(diǎn).線段PF的垂直平分線和半徑PE相交于Q.
(1)求動(dòng)點(diǎn)Q的軌跡的方程;
(2)點(diǎn),,點(diǎn)G是軌跡上的一個(gè)動(dòng)點(diǎn),直線AG與直線相交于點(diǎn)D,試判斷以線段BD為直徑的圓與直線GF的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知頂點(diǎn)為原點(diǎn)的拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,在第一和第四象限的交點(diǎn)分別為.
(1)若是邊長(zhǎng)為的正三角形,求拋物線的方程;
(2)若,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分15分)
已知橢圓C:+=1的離心率為,左焦點(diǎn)為F(-1,0),
(1) 設(shè)A,B分別為橢圓的左、右頂點(diǎn),過(guò)點(diǎn)F且斜率為k的直線L與橢圓C交于M,N兩點(diǎn),若,求直線L的方程;
(2)橢圓C上是否存在三點(diǎn)PE,G,使得SOPESOPGSOEG=?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

我們將不與拋物線對(duì)稱(chēng)軸平行或重合且與拋物線只有一個(gè)公共點(diǎn)的直線稱(chēng)為拋物線的切線,這個(gè)公共點(diǎn)稱(chēng)為切點(diǎn).解決下列問(wèn)題:
已知拋物線上的點(diǎn)到焦點(diǎn)的距離等于4,直線與拋物線相交于不同的兩點(diǎn)、,且為定值).設(shè)線段的中點(diǎn)為,與直線平行的拋物線的切點(diǎn)為..

(1)求出拋物線方程,并寫(xiě)出焦點(diǎn)坐標(biāo)、準(zhǔn)線方程;
(2)用表示出點(diǎn)、點(diǎn)的坐標(biāo),并證明垂直于軸;
(3)求的面積,證明的面積與、無(wú)關(guān),只與有關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓過(guò)點(diǎn),且它的離心率.
 
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)與圓相切的直線交橢圓于兩點(diǎn),若橢圓上一點(diǎn)滿(mǎn)足,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線C的頂點(diǎn)在原點(diǎn),開(kāi)口向右,過(guò)焦點(diǎn)且垂直于拋物線對(duì)稱(chēng)軸的弦長(zhǎng)為2,過(guò)C上一點(diǎn)A作兩條互相垂直的直線交拋物線于P,Q兩點(diǎn).

(1)若直線PQ過(guò)定點(diǎn),求點(diǎn)A的坐標(biāo);
(2)對(duì)于第(1)問(wèn)的點(diǎn)A,三角形APQ能否為等腰直角三角形?若能,試確定三角形APD的個(gè)數(shù);若不能,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓相交于、兩點(diǎn),且,試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線
(1)若圓心在拋物線上的動(dòng)圓,大小隨位置而變化,但總是與直線相切,求所有的圓都經(jīng)過(guò)的定點(diǎn)坐標(biāo);
(2)拋物線的焦點(diǎn)為,若過(guò)點(diǎn)的直線與拋物線相交于兩點(diǎn),若,求直線的斜率;
(3)若過(guò)點(diǎn)且相互垂直的兩條直線,拋物線與交于點(diǎn)交于點(diǎn)
證明:無(wú)論如何取直線,都有為一常數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案