考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)當(dāng)n≥2時(shí),
+
+…+
=
(a
n+n),
+
+…+
=
(a
n-1+n-1),
兩式相減可得
=
an-an-1+,化為
-=1.利用等差數(shù)列的通項(xiàng)公式即可得出.
(2)
•2
n=n•2
n.再利用“錯(cuò)位相減法”和等比數(shù)列的前n項(xiàng)和公式即可得出.
解答:
解:(1)當(dāng)n≥2時(shí),
+
+…+
=
(a
n+n),
+
+…+
=
(a
n-1+n-1),
∴
=
an-an-1+,
化為
-=1.
∴數(shù)列
{}是等差數(shù)列,∴
=
+(n-1)×1=n.
∴a
n=n
2.
(2)
•2
n=n•2
n.
∴數(shù)列{
•2
n}的前n項(xiàng)和S
n=1×2+2×2
2+3×2
3+…+n•2
n.
∴2S
n=2
2+2×2
3+…+(n-1)•2
n+n•2
n+1.
兩式相減可得:-S
n=2+2
2+2
3+…+2
n-n•2
n+1=
-n•2
n+1=(1-n)•2
n+1-2,
∴
Sn=(n-1)•2n+1+2.
點(diǎn)評(píng):本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、“錯(cuò)位相減法”,考查了推理能力與計(jì)算能力,屬于難題.