如圖,AB是半徑為1的圓的一條直徑,C是此圓上任意一點(diǎn),作射線AC,在AC上存在點(diǎn)P,使得AP·AC=1,以A為極點(diǎn),射線AB為極軸建立極坐標(biāo)系.
(1)求以AB為直徑的圓的極坐標(biāo)方程;
(2)求動(dòng)點(diǎn)P的軌跡的極坐標(biāo)方程;
(3)求點(diǎn)P的軌跡在圓內(nèi)部分的長度.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥選修4-4第3課時(shí)練習(xí)卷(解析版) 題型:解答題
解不等式:|x-1|>.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥選修4-4第2課時(shí)練習(xí)卷(解析版) 題型:解答題
設(shè)x、y、z∈R,且滿足x2+y2+z2=1,x+2y+3z=,求x+y+z的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥選修4-4第1課時(shí)練習(xí)卷(解析版) 題型:解答題
在極坐標(biāo)系中,已知曲線C1:ρ=12sinθ,曲線C2:ρ=12cos.
(1)求曲線C1和C2的直角坐標(biāo)方程;
(2)若P、Q分別是曲線C1和C2上的動(dòng)點(diǎn),求PQ的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥選修4-4第1課時(shí)練習(xí)卷(解析版) 題型:解答題
在極坐標(biāo)系中,曲線C1:ρ(cosθ+sinθ)=1與曲線C2:ρ=a(a>0)的一個(gè)交點(diǎn)在極軸上,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥選修4-2第2課時(shí)練習(xí)卷(解析版) 題型:解答題
已知矩陣M=,其中a∈R,若點(diǎn)P(1,-2)在矩陣M的變換下得到點(diǎn)P′(-4,0),求實(shí)數(shù)a的值;并求矩陣M的特征值及其對應(yīng)的特征向量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥選修4-2第2課時(shí)練習(xí)卷(解析版) 題型:解答題
已知矩陣M=有特征向量=,=,相應(yīng)的特征值為λ1,λ2.
(1)求矩陣M的逆矩陣M-1及λ1,λ2;
(2)對任意向量=,求M100.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥選修4-2第1課時(shí)練習(xí)卷(解析版) 題型:解答題
在直角坐標(biāo)系中,△OAB的頂點(diǎn)坐標(biāo)O(0,0)、A(2,0),B(1,),求△OAB在矩陣MN的作用下變換所得到的圖形的面積,其中矩陣M=,N=.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥選修4-1第1課時(shí)練習(xí)卷(解析版) 題型:解答題
如圖,在?ABCD中,BC=24,E、F為BD的三等分點(diǎn),求BM-DN的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com