【題目】如圖,矩形ABCD的兩條對(duì)角線(xiàn)相交于點(diǎn)M(2,0),AB邊所在直線(xiàn)的方程為x﹣3y﹣6=0,點(diǎn)T(﹣1,1)在AD邊所在直線(xiàn)上.

(1)AD邊所在直線(xiàn)的方程;
(2)矩形ABCD外接圓的方程.

【答案】
(1)解: AB邊所在直線(xiàn)的方程為x﹣3y﹣6=0,且AD與AB垂直,

∴直線(xiàn)AD的斜率為﹣3.又因?yàn)辄c(diǎn)T(﹣1,1)在直線(xiàn)AD上,

∴AD邊所在直線(xiàn)的方程為y﹣1=﹣3(x+1),3x+y+2=0.


(2)由 ,解得點(diǎn)A的坐標(biāo)為(0,﹣2),

∵矩形ABCD兩條對(duì)角線(xiàn)的交點(diǎn)為M(2,0).

∴M為矩形ABCD外接圓的圓心,又|AM|2=(2﹣0)2+(0+2)2=8,∴

從而矩形ABCD外接圓的方程為 (x﹣2)2+y2=8.


【解析】(1) AB的斜率確定,又AD與AB垂直可知AD的斜率為﹣3。點(diǎn)T(﹣1,1)在直線(xiàn)AD上, 代入直線(xiàn)方程的點(diǎn)斜式即可。
(2)由AD與AB的直線(xiàn)方程可求出A點(diǎn)坐標(biāo)。以M(2,0)為圓心,以AM為半徑的外接圓的方程即可確定。
【考點(diǎn)精析】本題主要考查了點(diǎn)斜式方程和圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí)點(diǎn),需要掌握直線(xiàn)的點(diǎn)斜式方程:直線(xiàn)經(jīng)過(guò)點(diǎn),且斜率為則:;圓的標(biāo)準(zhǔn)方程:;圓心為A(a,b),半徑為r的圓的方程才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用數(shù)學(xué)歸納法證明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12 時(shí),由n=k的假設(shè)到證明n=k+1時(shí),等式左邊應(yīng)添加的式子是(
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】x的取值范圍為[0,10],給出如圖所示程序框圖,輸入一個(gè)數(shù)x.
(1)請(qǐng)寫(xiě)出程序框圖所表示的函數(shù)表達(dá)式;
(2)求輸出的y(y<5)的概率;
(3)求輸出的y(6<y≤8)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩船駛向一個(gè)不能同時(shí)停泊兩艘船的碼頭,它們?cè)谝惶於男r(shí)內(nèi)到達(dá)該碼頭的時(shí)刻是等可能的.如果甲船停泊時(shí)間為1小時(shí),乙船停泊時(shí)間為2小時(shí),求它們中的任意一艘都不需要等待碼頭空出的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的角所對(duì)的邊份別為,且

1求角的大;

2,求的周長(zhǎng)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲船在島的正南方處,千米,甲船以每小時(shí)千米的速度向正北航行,同時(shí)乙船自出發(fā)以每小時(shí)千米的速度向北偏東的方向駛?cè),?dāng)甲,乙兩船相距最近時(shí),它們所航行的時(shí)間是( )

A. 分鐘 B. 分鐘 C. 分鐘 D. 分鐘

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=loga(x+3)﹣1(a>0,且a≠1)的圖象恒過(guò)定點(diǎn)A,若點(diǎn)A在直線(xiàn)mx+ny+1=0上,其中m,n均大于0,則 的最小值為(  )
A.2
B.4
C.8
D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方體 的棱長(zhǎng)為3,M,N分別是棱 、 上的點(diǎn),且 .
(1)證明: 四點(diǎn)共面;
(2)求幾何體 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在半徑為R的圓內(nèi),作內(nèi)接等腰△ABC,當(dāng)?shù)走吷细遠(yuǎn)∈(0,t]時(shí),△ABC的面積取得最大值 ,則t的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案