設(shè)兩圓C1、C2都和兩坐標(biāo)軸相切,且都過點(diǎn)(4,1),則兩圓心的距離|C1C2|=
8
8
分析:由題意易得圓在第一象限內(nèi),設(shè)圓心的坐標(biāo)為(a,a),則有|a|=
(a-4)2-(a-1)2
,解方程求得a值,代入兩點(diǎn)間的距離公式可求得兩圓心的距離|C1C2|的值.
解答:解:∵兩圓C1、C2都和兩坐標(biāo)軸相切,且都過點(diǎn)(4,1),故兩圓圓心在第一象限的角平分線上,
設(shè)圓心的坐標(biāo)為(a,a),則有|a|=
(a-4)2-(a-1)2
,
∴a=5+2
2
,或 a=5-2
2
,故圓心為(5+2
2
,5+2
2
 ) 和 (5-2
2
,5-2
2
 ),
故兩圓心的距離|C1C2|=
2
[(5+2
2
)-(5-2
2
)]=8,
故答案為:8
點(diǎn)評(píng):本題考查直線和圓的位置關(guān)系,其中根據(jù)已知分析出圓心在第一象限的角平分線上,進(jìn)而設(shè)出圓心坐標(biāo)是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)兩圓C1、C2都和兩坐標(biāo)軸相切,且都過點(diǎn)(4,1),則兩圓心的距離|C1C2|=( 。
A、4
B、4
2
C、8
D、8
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆四川省綿陽市高二12月月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)兩圓C1C2都和兩坐標(biāo)軸相切,且都過點(diǎn)(4,1),則兩圓心的距離|C1C2|=(  )

A.4                B.4            C.8                D.8

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年安徽省巢湖春暉學(xué)校高二上學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:選擇題

設(shè)兩圓C1、C2都和兩坐標(biāo)軸相切,且都過點(diǎn)(4,1),則兩圓心的距離|C1C2|=(  )

A.4            B.4       C.8             D.8

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省東莞市麻涌中學(xué)高一(下)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

設(shè)兩圓C1、C2都和兩坐標(biāo)軸相切,且都過點(diǎn)(4,1),則兩圓心的距離|C1C2|=( )
A.4
B.
C.8
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案