已知等差數(shù)列{an}的前n項(xiàng)和sn=tn2+(8-t)n+2t+2(t為常數(shù))
(1)求常數(shù)t 的值;(2)求極限數(shù)學(xué)公式的值.

解:(1)由題意可得 s0 =2t+2=0,∴t=-1. (2分)
(2)由以上可得 sn =-n2+9n,a1=8.
n≥2時(shí),an =sn-sn-1=10-2n. (2分)
綜上,an=10-2n.
==1. (2分)
分析:(1)由題意可得 s0 =2t+2=0,接觸t 的值.
(2)先求得sn的解析式,根據(jù)sn 與通項(xiàng)an的關(guān)系,求出an,再根據(jù)數(shù)列極限的運(yùn)算法則求出結(jié)果.
點(diǎn)評:本題考查等差數(shù)列的定義和性質(zhì),通項(xiàng)公式,前n項(xiàng)和公式的應(yīng)用,求數(shù)列的極限.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項(xiàng)公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;     
(2)求數(shù)列{|an|}的前n項(xiàng)和;
(3)求數(shù)列{
an2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}為遞增數(shù)列,請根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊答案