雙曲線的兩個(gè)焦點(diǎn)為F1、F2,以F1F2為邊作等邊三角形,若雙曲線恰平分三角形的另兩邊,則雙曲線的離心率為( 。
A、1+
3
B、4+2
3
C、2
3
-2
D、2
3
+2
分析:根據(jù)雙曲線的對(duì)稱性可推斷出三角形的頂點(diǎn)在y軸,根據(jù)正三角形的性質(zhì)求得頂點(diǎn)的坐標(biāo),進(jìn)而求得正三角形的邊與雙曲線的交點(diǎn),代入雙曲線方程與b2=c2-a2聯(lián)立整理求得e.
解答:解:雙曲線恰好平分正三角形的另兩邊,
頂點(diǎn)就在Y軸上坐標(biāo)是(0,
3
c)或(0,-
3
c)
那么正三角形的邊與雙曲線的交點(diǎn)就是邊的中點(diǎn)(
c
2
,
3
2
c)
在雙曲線上代入方程
c2
4a2
-
3c2
4b2
=1
聯(lián)立 b2=c2-a2求得e4-8e2+4=0
求得e=
3
+1 
故答選A.
點(diǎn)評(píng):本題主要考查了雙曲線的簡(jiǎn)單性質(zhì),考查了學(xué)生對(duì)雙曲線基礎(chǔ)知識(shí)的綜合把握,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
-1(a>0,b>0)
的兩個(gè)焦點(diǎn)為F:(-2,0),F(xiàn):(2,0),點(diǎn)P(3,
7
)

的曲線C上.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)記O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)Q(0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為2
2
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年高考數(shù)學(xué)第二輪復(fù)習(xí)熱點(diǎn)專題測(cè)試卷:平面解析幾何(含詳解) 題型:044

已知雙曲線的兩個(gè)焦點(diǎn)為F:(-2,0),F(xiàn):(2,0),點(diǎn)P(3,)的曲線C上.

(Ⅰ)求雙曲線C的方程;

(Ⅱ)記O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)Q(0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為求直線l的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年高考數(shù)學(xué)第二輪執(zhí)點(diǎn)專題測(cè)試、平面解析幾何(含詳解) 題型:044

已知雙曲線的兩個(gè)焦點(diǎn)為F:(-2,0),F(xiàn):(2,0),點(diǎn)P(3,)的曲線C上.

(Ⅰ)求雙曲線C的方程;

(Ⅱ)記O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)Q(0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)EF,若△OEF的面積為求直線l的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線的兩個(gè)焦點(diǎn)為F­1,F(xiàn)­2 ,點(diǎn)P在雙曲線上,△的面積為,則                              

A.2                       B.                        C.-2                   D.  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線的兩個(gè)焦點(diǎn)為F­1,F(xiàn)­2 ,點(diǎn)P在雙曲線上,的面積為,則                     

A.2                   B.               C.-2               D.-

查看答案和解析>>

同步練習(xí)冊(cè)答案